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A student-based university environment for engineering design and de-

velopment is much different from a product development environment within

the aerospace industry. Therefore, a different approach to systems engineer-

ing should be considered. By its very nature, a university product develop-

ment laboratory thrives on creativity and rejects bureaucracy. Experience

shows that continuity and discipline within a project is crucial for success.

The practice of systems engineering enables technical project discipline. Sys-

tems engineering is the art and science of developing an operable system that

meets requirements within imposed constraints. The purpose of this thesis is

to describe the systems engineering processes and techniques necessary for a

student-based project, and explicitly show how to implement these processes.

Although attempts have been made to utilize a few systems engineering tech-

niques in past projects, many students did not properly and consistently apply

those techniques to the technical design work. The goal of the thesis is to tailor

the NASA systems engineering processes to a student-based design laboratory
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environment and to apply the methodologies to the mission design of Paradox.

The Picosatellite for Autonomous Rendezvous and Docking on-Orbit eXperi-

ment, or Paradox, is the second of four missions to demonstrate autonomous

rendezvous and docking with a picosatellite-class satellite.

A strong technical contribution highlighted within the thesis involves

developing an open architecture rendezvous targeting algorithm for the Para-

dox mission in the face of large mission architecture uncertainties. The robust

targeting algorithm builds from previous work utilizing an optimizer based on

the Clohessey-Wiltshire equations and an iterative Lambert targeter. The con-

tribution extends the rendezvous transfer times by including a multi-revolution

Lambert targeter. The rendezvous algorithm will perform successfully given

any launch vehicle and target spacecraft vehicle supporting the notion of an

open architecture to satisfy the mission. The development of the algorithm is

embedded within the context of the systems engineering processes to clearly

showcase the intimate connection between systems engineering processes and

the technical engineering design of a mission.
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Chapter 1

Introduction

The goal of the thesis is to present systems engineering processes for

a student-based design laboratory and to apply these necessary processes to

an ongoing spacecraft mission design. However, there are multiple styles of

systems engineering across multiple disciplines including ones from the US

Department of Defense and the International Council on Systems Engineering

(INCOSE). The NASA standard was selected as the baseline and was tailored

to the needs of a student-based design laboratory.

As background, an undergraduate course entitled Space Systems Engi-

neering is offered in Aerospace Engineering at the University of Texas at Austin

(UT Austin). The pilot was sponsored by NASA’s Exploration Systems Mis-

sion Directorate in the spring semester of 2008, and now the course is required

at UT Austin and offered at other universities. The systems engineering prac-

tices taught in the class encompass the full spectrum of the NASA systems

engineering procedures supported with examples from NASA missions. The

goal of the undergraduate systems engineering class is not to transform the

aerospace engineers into systems engineers, but to provide an awareness and

appreciation of systems thinking, tools, and processes encountered as profes-

sionals. The challenge in gaining a deep understanding of systems engineering

is that actual project experience is a key component and not generally available

1



in a standard lecture course.[15]

Fortunately, students at UT Austin are gaining project experience in

student-based design laboratories. Specifically, projects in the UT Satellite

Design Lab (SDL) introduce students to many of the facets of systems engi-

neering.[15] Since a majority of students involved with the SDL have taken, or

will eventually take, the Space Systems Engineering course, a feedback process

is developing within the lab. Students gain initial project experience within

the SDL, then take the Space Systems Engineering course and begin to realize

the context of all of their previous work. In the end, students refocus their en-

gineering design efforts in the SDL with respect to the “big picture” provided

by the systems engineering course. In a sense, the feedback loop is developing

a systems engineering culture within the SDL.

1.1 Paradox Mission

The Picosatellite for Autonomous Rendezvous and Docking on-Orbit

eXperiment, or Paradox mission, is one of two missions currently being sup-

ported by the SDL. This mission will be used in this thesis to demonstrate

the principles of systems engineering. Paradox is the second in the series

of four collaborative picosatellite missions with Texas A&M University spon-

sored by NASA Johnson Space Center’s (JSC) Lonestar Program. Specifi-

cally, Paradox is to demonstrate and evaluate enabling technologies for an

autonomous rendezvous and docking mission for picosatellite-class spacecraft.

The technologies include satellite-to-satellite crosslink communications, high-

bandwidth ground communications, attitude determination and control, rela-
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tive navigation, propulsion, and an imaging capability.

Significant mission design experience was obtained on a previous project

in the SDL. The project known as Texas 2-STEP was a nanosatellite designed

to perform autonomous rendezvous. The development of an autonomous ren-

dezvous algorithm on Texas 2-STEP aided the Paradox mission.[3] In light of

the purpose of the thesis - to connect the systems engineering practices with

the design - the rendezvous research on Texas 2-STEP is revisited in depth

with respect to the Paradox mission. Additionally, due to the mission focus

on Guidance, Navigation and Control (GNC), the focus here will be on the

GNC aspects of the Paradox mission and the GNC subsystem itself.

As a project within the SDL, Paradox is unique because of the recent

inclusion of two small companies in the design process. Due to the increased

technical complexity of the Paradox mission, NASA recognized early on the

need to provide more support for the Lonestar Program; and thus, utilized the

NASA Small Business Technology Transfer (STTR) program to infuse more

technical expertise into the process. The STTR Program is a three-phase

approach to develop technology in response to a specific set of NASA mission

driven needs. The STTR program involves a research institution partnering

with small businesses to develop new technology. The mission design team

expanded to include professors, students and practicing engineers working in

Phase I in partnership.

The SDL finds itself once again at the front-end of a project and chal-

lenged to “get it right”. Systems engineering is the key factor. The Paradox

project will be the test bed for the systems engineering processes described
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for use in student-based design laboratories. The systems procedures will be

demonstrated at multiple levels within the student project. Particularly, the

GNC subsystem or GNC-related aspects of the mission will be used throughout

the thesis as an example of applying the systems practices at the subsystem

and component level.

1.2 Project Life Cycle

The Paradox mission development is underway. At the writing of this

thesis, the design maturation is only at a conceptual level with a focus on tech-

nology development to enable the mission. A fundamental aspect of systems

engineering is understanding the project life cycle. The project life cycle is

the sequential categorization of everything that should be done to accomplish

a project in phases separated by decision points or control gates. Although

not covered in detail in this thesis, the project life cycle plays a key role in

overall mission success. Briefly, the NASA Systems Engineering project life

cycle is separated into seven different phases outlining the classic waterfall

approach[1],

Pre-Phase A Conceptual Studies - Produces a broad spectrum of ideas and

alternatives for missions from which new projects can be selected.

Phase A Conceptual Design and Technology Development - Determines the

feasibility and desirability of a suggested new system.

Phase B Preliminary Design and Technology Completion - Defines the project

in enough detail to establish an initial baseline capable of meeting mis-
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sion needs.

Phase C Final Design and Fabrication - To complete the detailed design at

every level of the system and fabricate or procure the hardware.

Phase D Integration and System Verification - To assemble and integrate the

individual elements to create the larger system. To perform end-to-end

testing and verification to ensure system will meet mission requirements.

The phase is concluded upon launch.

Phase E Operations - The mission is conducted and the needs, goals and

objectives are met.

Phase F Close-out - The mission is completed, and the system is properly

disposed.

The systems processes must be actively engaged throughout the project

life cycle and at all the various levels of the system development. The intent of

Phase I in the STTR program is to develop the concept of a new system and

perform technology development in accordance with work expected in Phase

A of a project life cycle. As Paradox is the project example implementing

the systems processes described in this thesis, the level of design maturation

should be considered Phase A with respect to the project life cycle.

Phase A has a focus based on mission concept studies and technology

development. Therefore, the following technical products for hardware and

software system elements are expected by the end of the phase[18]:
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1. System architecture.*

2. System requirements document.*

3. Updated concept of operations.*

4. Updated mission requirements, if applicable.

5. Preliminary system requirements allocation to the next lower level sys-

tem.*

6. Technology development assessment.

7. Preferred system solution definition including major trades and options.*

8. Updated risk assessment and mitigations.*

9. Configuration management plan.

10. Verification approach.*

*The examples herein showcase these aspects of the Paradox mission in accor-

dance with what is expected by the end of Phase A.

1.3 Thesis Organization

The thesis has a total of fourteen chapters. Chapters 2 and 3 further

motivate the need for systems engineering practices in a student-based design

laboratory and provide a basic definition of a student-based design labora-

tory. Chapter 4 describes systems engineering, technical engineering design

and the fundamental connection between the two disciplines. The connection

is primarily described through a “road-map” that outlines the input-output re-

lationship between the systems engineering practices for student-based design

laboratories and the technical engineering design.

Chapters 5 through 12 are the eight systems engineering practices for
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a student-based design laboratory. Each chapter describes the purpose and

extent of using the process within a student-based design laboratory as well

as example(s) to characterize the process’ use. Last, Chapter 13 highlights

the importance of iterating the systems engineering processes within a project

and Chapter 14 presents conclusions and summarizes the systems engineering

processes for a student-based design laboratory.
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Chapter 2

Motivation

The need for usable systems engineering practices within a student-

based design laboratory derives primarily from the experiences of students as

they moved through the entire system development life cycle of three space-

craft systems: FASTRAC, Texas 2-STEP and PARADIGM. For the past ten

years, students have strived to design, fabricate and integrate small satellites

in the Satellite Design Lab (SDL). The PARADIGM spacecraft, a picosatel-

lite reached orbit in July 2009. The FASTRAC spacecraft, a nanosatellite,

is manifested for launch in the summer of 2010. Texas 2-STEP was planned

as an integrated spacecraft mission with a nanosatellite chaser vehicle and a

picosatellite target vehicle. This was the first attempt to design a complex

autonomous rendezvous mission in the SDL. Through each of these major

projects, students gained valuable engineering skills in the design, fabrication

and operation of actual flight satellites, but students also realized the need for

the application of systems engineering principles and have tried to implement

aspects of this discipline. The following is an overview of how each major

satellite project in the SDL implemented systems engineering processes and

subsequently the lessons learned at the end of each project.

8



2.1 FASTRAC

FASTRAC (Formation Autonomy Spacecraft with Thrust, Relnav, At-

titude and Crosslink) was the winner of the University Nanosat-3 (UNP-3)

competition held in January 2005 hosted by the Air Force Research Labora-

tory (AFRL). The purpose of FASTRAC is to investigate and demonstrate

enabling technologies for satellite formations. FASTRAC has been manifested

for launch by the US Air Force on STP-26 in the summer of 2010.

The FASTRAC team charted new territory for designing and fabricat-

ing a flight worthy satellite in a student-based design laboratory environment.

The project encountered many of the classic problems experienced when sys-

tems engineering principles are neglected. For example, prior to the UNP-

3 Flight Competition Review (FCR), the FASTRAC student team struggled

with balancing time spent developing the satellites and time dedicated to writ-

ing the necessary documentation required by the UNP-3 competition. After

winning FCR, AFRL required the team to implement configuration manage-

ment for all documentation and to implement quality control measures for

fabrication of flight hardware.[7]

In addition, the project underwent significant redesign in order to move

from the engineering design unit to flight hardware. Almost every element

on the satellite (electrical and mechanical) had to be modified to satisfy the

AFRL standards. The redesign can be attributed to a misunderstanding of

UNP-3 flight-build requirements, the onset of requirements creep and new

requirements imposed by AFRL after the UNP-3 flight selection.[7]

As the first UT student-built satellite, the FASTRAC project success-
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fully showed student-based design laboratories are capable of delivering flight

hardware. However, the experience demonstrated to students the essential

need for systems practices early on in the project life cycle to alleviate prob-

lems during flight hardware fabrication.

2.2 Texas 2-STEP

In support of its mission to perform autonomous, on-orbit, proximity

operations with a rapidly producible nanosatellite, Texas 2-STEP developed

technologies in small satellite sensor fusion, attitude determination, navigation

filtering and control logic. Texas 2-STEP began in January 2005 as ARTEMIS

immediately after FASTRAC was announced the winner of the University

Nanosat-3 (UNP-3) competition. ARTEMIS (Autonomous Rendezvous and

rapid Turnaround Experiment Maneuverable Inspection Satellite) was the UT

entry in the University Nanosat-4 (UNP-4) competition from 2005 to 2007.

The project was then reentered into the next competition cycle UNP-5 with a

new name, Texas 2-STEP, and the same mission goals and objectives.

The ARTEMIS team implemented some systems engineering practices

early in the life cycle. The project developed a high-level functional concept

of operations, derived requirements to the subsystem level and created mass

and volume budgets. Then as a separate task, the team began designing

the satellite. The systems engineering practices implemented in the first two

years were seemingly abandoned in the design and build phase. Requirements

were not updated and became invisible to the subsystem engineers. Mass and

power margins were not managed, and interfaces between subsystems were
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never defined.

A primary reason that the early systems engineering was lost, was that

the students who initiated and developed the mission were not the same as

the students who performed the detailed design and fabrication of the engi-

neering design unit. A major student turn-over after ARTEMIS and at the

initiation of Texas 2-STEP left much of the initial design misunderstood and

consequently reworked. The incoming student design team was focused on

delivering subsystem hardware and insufficient time was spent on ensuring the

design was integratable. The students recognized the need but lacked the basic

understanding of systems engineering practices and failed to carry the prac-

tices throughout the project life cycle. This proceeded to be a major hindrance

to success.

After the UNP-5 Flight Competition Review in January 2009, Texas

2-STEP was abandoned after not being selected. The primary reason for not

continuing the project is due to the philosophy that student projects should

not span more than four to five years. Therefore, students have a chance to

participate in a student project from inception to flight before they graduate.

A “lessons learned” review was held immediately after the competition

review. Systems engineering related problems were explored in the lessons

learned exercise. These included scope, interfaces and resource management.

The scope for Texas 2-STEP was too large for the SDL at the time and possi-

bly too large for a student-based design laboratory. As opposed to the mission

architecture devised for the NASA Lonestar Program, which is much more di-

gestible for a student-based design laboratory for a similar broad mission goal,
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Texas 2-STEP essentially attempted to do a fully autonomous rendezvous be-

tween two spacecraft from scratch. Subsystem interfaces were a key problem,

which innately permeated the subsystem design causing significant system

design deficiencies. Most students simply did not realize whether they or

someone else should have incorporated the interface within the design. Her-

itage systems from FASTRAC were recognized in the design, but the necessary

modifications were never carried through. Last, resource management, partic-

ularly the power budget, was not actively updated to the extent necessary to

even prove whether the current design was feasible.

A positive outcome of Texas 2-STEP is that many of the technologies,

lessons learned and personnel are now supporting the new projects in the SDL,

specifically Paradox. The experience gained from Texas 2-STEP is invaluable

to the incoming student teams.

2.3 PARADIGM

PARADIGM (Platform for Autonomous Rendezvous and Docking with

Innovative GN&C Methods) was the first of the four missions outlined by the

NASA JSC Lonestar Program. The goal is to perform an autonomous ren-

dezvous and docking by the fourth and final mission. The series of four mis-

sions are to be incremental steps to reach the goal. For the first mission, each

university contributed a picosatellite that was launched from the Space Shut-

tle STS-127 in July 2009. The mission was to collect GPS measurements from

the NASA DRAGON GPS receiver as the first step in picosatellite navigation.

PARADIGM, similarly with Texas 2-STEP, focused early on systems
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engineering. While the first year of effort was spent on properly scoping the

mission and developing requirements, PARADIGM as-built lacked working

requirements and mass or power resource budgets. The concept of operations

was developed in parallel with the flight software and interfaces were only

successfully handled because each student intimately knew the entire design.

PARADIGM had also no significant management structure aside from

having a student program manager. Instead, the students collectively attacked

design or fabrication problems as they developed. In one sense, the students

acted as subsystem design, fabrication engineers and as systems integrators all

at the same time. The project culture on PARADIGM is highly recommended

because it forced each student to understand the complexities of every sub-

system with respect to the entire system. However, a major problem was the

lack of design verification and full system testing. The team performed exten-

sive subsystem testing, but little in the way of full system testing, especially

environmental testing.

As UT’s first satellite in space, the mission was far from successful.

PARADIGM did demonstrate the ability of a student-based design laboratory

to deliver a flight quality satellite, but was unable to perform the mission

because the UT and A&M satellites did not separate from each other. A de-

tailed failure analysis pointed specifically to an overly sophisticated separation

design and the lack of system environmental testing. In the end, time spent

performing full system verification with the Texas A&M satellite may have

uncovered the underlying design problems.

As each of these projects has demonstrated, there needs to be a focused
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effort in implementing systems engineering practices throughout the project

life cycle. A systems engineering culture needs to be developed within the

student-based design laboratory, and the processes must continually be imple-

mented.
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Chapter 3

Student-based Design Laboratory Definition

A student-based design laboratory is composed of undergraduate and

graduate student engineers with one or more student leaders. The purpose

of a student-based design laboratory is for the students to design, build, test

and deliver a final product to a customer. A student-based design laboratory

is overseen by a faculty advisor whom is the Principle Investigator (PI) for

projects within the laboratory and acts as a base for expertise and direction.

However, design decisions are ultimately made by the students. Specifically at

UT Austin, the faculty are exceptionally “hands-off” leaving all engineering

and even purchasing decisions to the student leadership. Funding is primar-

ily provided for hardware by faculty or external organizations. Some of the

funding may support a few select students to provide a level of continuity and

quality.

There are several characteristics that define a student-based design lab-

oratory that make it distinctly different from a professional organization within

the aerospace industry. The student-based design laboratory is characterized

by a volunteer workforce, unusual time constraints, large student turnover

rates, lack of experiences, innovation and a general dislike for bureaucracy.

These six characteristics are defined as follows:

1. Volunteer Workforce A defining characteristic of a student-based design
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laboratory is the (mostly) volunteer workforce. With the exception of

technical elective course credit and possibly a handful of funded student

positions, most students volunteer their time to a student-based design

laboratory to supplement their academic education. The appeal of a

student-based design laboratory is working on a project that moves from

concept to operations. Unfortunately, a volunteer workforce is difficult to

maintain and the 80-20 rule applies to a student-based design laboratory.

That is, 20% of the team does 80% of the work. The rule often creates

a “hero-environments”[7] where dedicated students perform most of the

work.

2. Unusual Time Constraints As students at a university, volunteers are

already committed to a full engineering curriculum and possibly other

university affiliated extracurricular activities. Progress is often made in

short spurts on the weekends, in between weekly homework assignments

and mid-term examinations. Weekly productivity is not constant and,

unfortunately, by the end of a semester, students are busy with finals and

final projects. In addition, some students are eager and able to work dur-

ing the summer, but most go home, participate in internships or other

similar activities. The problem is aggravated since commercial contrac-

tors, vendors and government organizations supporting the project often

do not consider the academic calendar when scheduling external reviews,

site visits, product shipments, project funding or expert teleconferences.

3. Large Turnover Rate As expected, graduation is the primary reason for

quality students to leave a project. Students graduate every semester
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taking with them the knowledge and experience provided through the

student-based design laboratory environment. Unfortunately, this oc-

curs throughout the project life cycle and assumptions, design rationale,

system testing results and more is often lost, leaving new students to per-

form a significant amount of rework. In addition, the cyclical turnover

rate adds another task for incumbent students to recruit and replenish

ranks at the start of each new academic semester.

4. Lack of Experience An aerospace project is a multi-disciplinary endeavor

and students are often in the middle of their degrees as they work in

student-based design laboratories. Without previous experience working

on an actual project, many students have a steep learning curve. Dif-

ferent majors have different strengths and recruitment efforts purposely

span multiple engineering and science disciplines to acquire a variety of

skills necessary for the project.

5. Innovation Student-based design laboratories are often unencumbered

with the past; thus, allowing creative concepts to emerge. External

organizations often invest in student-based design laboratories to solve

unique problems due to the innovative culture existing within student-

based design laboratories.

6. Rejects Bureaucracy Students are very motivated to design, build and

test their ideas, but are very disinclined towards documentation, meet-

ings and other forms of bureaucracy that provide a level of quality assur-

ance and continuity within the project. Consistent meetings are rarely
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successful due to students’ chaotic schedules. The tendency not to docu-

ment work causes problems within a project because of the high turnover

rate. Nevertheless, a student-based design laboratory does not require

the level of overhead larger organizations need. Within a student-based

design laboratory, the students act in multiple roles (such as designer and

technician), which enables a student-based design laboratory to function

without the high level of bureaucracy seen in industry.

Due to these characteristics that uniquely define a student-based design

laboratory, the NASA defined systems engineering processes must be modified

to better serve the students and their projects within this unique environment.
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Chapter 4

The Systems Engineering and Technical

Design Link

4.1 Systems Engineering

Systems engineering is a difficult discipline to define in a single sen-

tence. The NASA Systems Engineering Handbook has many definitions in-

cluding, “Systems engineering is a methodical, disciplined approach for the

design, realization, technical management, operations and retirement of a sys-

tem.” and “Systems engineering is a holistic, integrative discipline, wherein

the contributions of structural engineers, electrical engineers, mechanism de-

signers, power engineers, human factors engineers and many more disciplines

are evaluated and balanced, one against another, to produce a coherent whole

that is not dominated by the perspective of a single discipline.”[1]

Each definition takes a different viewpoint of systems engineering in the

attempt to define systems engineering. Key aspects are often omitted in any

definition. Basic topics encompassed in systems engineering are discussed here

for student-based design laboratories. These include scope, systems hierarchy,

interface management, requirements, trade studies, resource management, risk

management, system verification and technical reviews. Other topics within

the systems engineering umbrella include technical planning, functional anal-

ysis, technical decision analysis, cost analysis, reliability, product integration,
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etc. In addition, the breath and depth of each of these topics spans multiple

handbooks and technical journals, such as the Journal of Systems Engineering

produced by INCOSE, addressing a variety of industries, not just aerospace.

The sheer volume is a key reason to tailor these processes for the scope of a

small student-based design laboratory given the unique environment described

in Chapter 3.

In fact, the NASA Systems Engineering Handbook briefly addresses the

topic of modifying systems engineering based on the size or scale of a project,

The exact role and responsibility of the systems engineer may

change from project to project depending on the size and com-

plexity... For large projects, there may be one or more systems

engineers. For small projects, sometimes the project manager may

perform these practices. But, whoever assumes those responsibili-

ties, the systems engineering functions must be performed.[1]

Each of the general systems engineering topics discussed in the thesis

are described below,

Scope is the broadest definition of the program or project. Starting with the

stakeholder’s expectations, the project scope outlines the needs, goals

and objectives for a project; establishing the basic architecture and de-

veloping the concept of operations for the resulting system.

System Hierarchy is the framework defining the functional aspects for each

element within a system.

Interfaces defines the interrelationships between elements within a system.
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Requirements is the process of translating the scope into a definition of the

specific problem such that the end-product satisfies functions to a level

of performance to achieve the mission.

Trade Studies are the high level technical analyses that support design de-

cisions.

Resource Management maintains the resources shared between elements

of a system such as mass, volume and power.

Risk Management identifies and mitigates potential problems of the design

in order to meet the mission need.

System Verification acknowledges that the system designed, built and flown

successfully satisfies all mission objectives and requirements.

Technical Reviews are the key decision points identified in the project life

cycle to allow independent review of progress.

4.2 Technical Engineering Design

Technical engineering design is a broad topic spanning multiple disci-

plines that is not easily characterized. Design establishes and defines solutions

to and pertinent structures for problems not solved before, or new solutions to

problems which have previously been solved in a different way.[19] Every engi-

neering discipline has its own analysis tools and design techniques to develop

solutions to problems common within that discipline.

The ability to design is both a science and an art.[19] Systems engineer-

ing is also often expressed as both a science and an art.[1] The science aspect
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of both engineering design and systems engineering can be learned through

techniques and processes, like the systems processes outlined herein. However,

the art can only be learned through performing systems engineering or design

in the context of a realistic project.

Systems engineering is often considered the glue by providing discipline

and continuity to the design effort. By essentially wrapping around the design

and development of a project, systems engineering gives the design effort pur-

pose and context within the overall needs for the end-product. While the thesis

is not looking specifically at design principles or processes for student-based

design laboratories, systems engineering is not independent from the design

and development effort; and thus, cannot be treated independently. That is to

say the systems engineering and engineering design are intimately connected.

4.3 The Ubiquitous Connection

In any basic analysis or design effort, “What is good enough?” is a

question often asked. A common reply is, “Keep it simple; better is the enemy

of good enough.” Thus is the approach for systems engineering for student-

based design laboratories. With limited personnel and expertise, students

can often become inundated with the array of systems engineering tools one

could implement in a project. Additionally, there is a natural tendency for

students to focus on technical engineering design and analysis. In light of the

basic definition, a student-based design laboratory is unable to support a large

amount of systems engineering that is independent of the design, fabrication

and testing of a product. Therefore, the primary aspect of the thesis is to merge
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the systems engineering with the technical engineering design and analysis to

simplify the overall process.

Fig. 4.1 depicts the road-map for the thesis, describing the general

connections of each system engineering topic with respect to the technical de-

sign and effectively relating the basic systems processes directly to the design

process. The road-map depicts the inherent iterative nature of systems engi-

neering. Each numbered relationship is described in more detail as both an

input and an output with respect to each systems engineering process. Based

on the need of the reader, the following detail descriptions of the inputs and

outputs will guide the reader from one systems process to another.

4.3.1 Scope

Inputs

1. Mission need and initial customer expectations provide initial pur-

pose for the project.

21. As the system is partitioned, the architecture and concept of op-

erations for each element is recursively evaluated to ensure each

element satisfies the larger mission needs, goals and objective.

31. The requirements are validated against customer expectations to

ensure the correct system is built.

41. Trade studies provide analysis for architecture decisions and con-

cept of operations planning.

71. System architectures and concept of operations are evaluated for

risks and mitigation strategies are implemented.
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Figure 4.1: Showcases the inherent connections between systems engineering
topics and the fundamental core of design for a student-based design labora-
tory.
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91. Technical reviews, especially the Mission Concept Review, provide

critical feedback into the feasibility and the overall mission plan at

achieving stakeholder expectations.

Outputs

11. Architecture and concept of operations directly support the system

hierarchy definition and interfaces.

12. The needs, goals and objectives provide the root for all requirements

development. The concept of operations and architecture act as a

source of requirements.

13. Various architectures are analyzed in more detail to determine the

most viable option as well as identifying de-scope options as the

fidelity of the design increases and grows past constraints.

14. Stakeholder expectations are a metric from which the design is val-

idated against.

15. Mission Concept Review focuses on the scope of the mission, albeit

all reviews focus on the refinement and fulfillment of the scope as

the project steps through the life cycle.

4.3.2 Systems Hierarchy and Interfaces

Inputs

11. Scope identifies the overarching system to meet objectives and sub-

sequently the system is decomposed into components based on the

architecture and concept of operations.
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42. Trade studies often provide technical rationale for partitioning the

system into specific elements.

92. Technical reviews, particularly Mission Concept Review and Pre-

liminary Design Review, provide feedback on the allocation of the

system.

Outputs

21. The systems hierarchy identifies elements to a larger system, which

feeds back into the Scope for architecture and operations concept

development.

22. The systems hierarchy provides a clear structure for requirements

flow-down. Interfaces are established and interface requirements

are developed.

23. The hierarchy functionally divides the design into aspects providing

a pseudo-work breakdown structure for a student-based design lab-

oratory. Interface management defines where the interfaces are and

who is responsible for them within the design and development.

24. The hierarchy allocates functionality and thus resources as the sys-

tem is decomposed into pieces.

25. Mission Concept Review and Preliminary Design Review focus on

the systems hierarchy and interfaces, although all technical reviews

expect refinement.

4.3.3 Requirements

Inputs
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12. Mission scope provides the mission needs goals and objectives from

which all requirements are derived.

22. The systems hierarchy allocates functions to elements for which

requirements are written. In addition, the hierarchy provides a

clear structure for the organization of requirements.

43. Trade studies directly provide performance requirements, but also

provide assumptions, constraints and rationales to support require-

ments.

72. Risk analysis verifies the design will meet the requirements and

risk mitigation strategies often get translated into requirements to

ensure mission success.

81. Failure to verify requirements will lead to requirement modification

or waivers.

93. Requirements must be reviewed prior to Preliminary Design Review

to ensure complete and internally consistent requirements for the

system to be verified against.

Outputs

31. Requirements are validated against stakeholder expectations.

32. Performance requirements must be quantified by analysis to bound

the mission design space.

33. The requirements directly provide the design space for a product to

be realized.

34. Requirements bound the technical resources in the form of con-

straints.
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35. The requirement verification matrix provides a method to verify the

design is correct.

36. Requirements are a focus prior to Preliminary Design Review and

requirement verification is a focus in any Test Readiness Review

and the Flight Readiness Review.

4.3.4 Trade Studies

Inputs

13. Various architecture trades and studies on the feasibility of the con-

cept of operations directly fall from the scoping exercise for a mis-

sion to provide analysis and thus rationale to refine the mission

scope.

32. Performance requirements must be quantified by trade studies.

51. Design solutions feed back into trade studies to properly compare

design options.

61. Resource margins for the designs accompany design options to com-

pare.

73. Additionally, risk analysis enters into the trade studies to compare

and select the most appropriate solution for the mission with the

intent of minimizing risk.

94. Mission Concept, Preliminary and Critical Design Reviews provide

assessments on active trade studies and evaluation of finalized trade

study results.

Outputs
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41. Architectural trade studies influence the scope and concept of op-

erations.

42. Trade studies help determine the best engineering solution when

partitioning the system and defining interfaces to represent it within

the systems hierarchy.

43. Trade studies define performance requirements, justify assumptions

and outline constraints.

44. Trade studies directly impact the design and development, inform

component-level hardware selection and provide assumptions and

constraints to the design.

45. Architectural trade study results are a priority in Mission Concept

Review, while design related trade studies are the focus in Prelim-

inary Design Review and Critical Design Review.

4.3.5 Design and Development

Inputs

23. The system hierarchy defines the full system down to the component

level and interfaces for the design.

33. Requirements provide the definition of the design space. That is

the design and development must satisfy the requirements.

44. Trade studies provide the analysis and rationale for design solutions.

62. Resource management characterizes and maintains the design and

development to satisfy constraints.

74. Risk mitigation strategies directly translate into design modification

to reduce mission risk.
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82. Failure in the design of not meeting verification requirements in-

volves redesign or requiring a waiver for the requirement that is not

satisfied.

95. All technical reviews inherently evaluate the design and develop-

ment of the project to ensure progress.

Outputs

51. The design and development effort feeds directly back into the trade

study process as more information is provided to make a decision.

52. Design provides actual data for resource management. Resource

management ensures proper resource allocation to meet constraints

within the design and development.

53. Risk analysis identifies risks specific to a design.

54. The design and development must be properly documented and

verified against the requirements to ensure mission success.

55. The design and development are the focus of every technical review.

4.3.6 Resource Management

Inputs

24. The systems hierarchy provides the structure for general allocation

of resources between the elements of a larger system.

34. Requirements bound the technical resources in the form of con-

straints.

52. Resource management is directly performed on the design and de-

velopment to ensure constraints are being met.
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96. Preliminary Design Review, Critical Design Review and Flight Readi-

ness Review provide essential feedback with respect to the resource

margins.

Outputs

61. Resource budgets provide a platform to trade options and make the

best decision with respect to the entire system.

62. Constraints in resources directly affect the design and development

in a system by restricting the design space.

63. There is an inherent risk for not managing resources properly, thus

analysis on resource margins inform the risk to the mission.

64. Resource budgets must be properly documented and are used to

verify system requirements.

65. Resource management is important in Preliminary Design Review,

Critical Design Review and ultimately the Flight Readiness Review

as verification the system meets constraints.

4.3.7 Risk Management

Inputs

53. The design is a direct input for risk analysis.

63. Minimal margins from resource management is often a direct indi-

cator of design risks, and risk analysis must ensue to mitigate the

risk of the system not meeting constraints.

97. Technical reviews throughout the life cycle provide feedback on risk

analysis and mitigation strategies.
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Outputs

71. Risk assessment of the design within the context of the architecture

and concept of operations will feedback into the scope of the mission

with the intent to re-scope the mission to reduce risk.

72. The result from risk analysis often requires the mitigation of the

risk within the design and thus, the mitigation becomes embedded

in the requirements.

73. Risk analysis results often feed into trade studies to make an in-

formed decision.

74. Mitigation strategies directly feed into the design and development

effort.

75. Major mission risks should be documented and mitigation strategies

should be tracked. In addition, risk analysis drives the level of

testing required to verify mission success.

76. Mission risks are initially reviewed in the Mission Concept Review.

Risks are then consistently reviewed at Preliminary Design Review,

Critical Design Review and then Flight Readiness Review to ensure

successful mitigation throughout development.

4.3.8 System Verification

Inputs

14. Scope provides stakeholder expectations for the design to be vali-

dated against.

35. Verification is performed with respect to the requirements, thus the
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requirements verification matrix is actively used during the verifi-

cation process.

54. The design and development is verified against the requirements

through analysis, demonstration, inspection and/or testing.

64. Resource management provides quantitative analysis that the de-

sign is verified with respect to technical resource constraints.

75. The risk analysis identifies verification methods as mitigation strate-

gies for alleviating mission risk, such as a test to demonstrate an-

tenna deployment in a relevant environment.

98. Technical reviews particularly the Test and Flight Readiness Re-

views act as an independent verification that the system has been

properly verified against the requirements.

Outputs

81. Failure to properly verify the system against the requirements leads

to modification or waivers of the requirements.

82. Failure to properly verify the requirements leads to redesign.

83. System verification is a focus in any Test Readiness Review needed

and the Flight Readiness Review to ensure mission success.

4.3.9 Technical Reviews

Inputs

15. Scope is primarily evaluated in the Mission Concept Review.

25. The system hierarchy and interfaces are reviewed primarily at the

Mission Concept Review, Preliminary and Critical Design Reviews.
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36. Requirements should be constantly under review between Mission

Concept Review to the Critical Design Review.

45. Trade studies are reviewed at the Mission Concept Review, Prelim-

inary and Critical Design Reviews.

55. The design is evaluated at every technical review.

65. Resource analysis is primarily focused upon during Preliminary and

Critical Design Reviews to ensure healthy margins exist against

imposed constraints.

76. Mission risks are evaluated and watched from the Mission Concept

Review to the Flight Readiness Review to ensure successful mitiga-

tion.

83. System verification is important in the Flight Readiness Reviews.

Outputs

91. Mission Concept Review and subsequent reviews provide feedback

to the architecture and concept of operations of the mission.

92. Mission Concept Review and Preliminary Design Review evaluate

the hierarchy and interface definition.

93. Requirements and requirements verification must be constantly re-

viewed, focused on prior to Preliminary Design Review.

94. Architecture trade studies are evaluated at the Mission Concept

Review and detailed trade results are reviewed in Preliminary and

Critical Design Reviews.

95. The maturity of the design and progress in development is inher-

ently assessed in every technical review.
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96. The design in the context of meeting resource constraints is a fo-

cus in Preliminary and Critical Design Reviews to ensure mission

success.

97. Risk analysis and mitigation strategies are reviewed at Mission Con-

cept, Preliminary and Critical Design Reviews to ensure proper

mitigation by Flight Readiness Review.

98. Flight Readiness Reviews confirm that the product is successfully

verified.

99. At the end of the Flight Readiness Review the final product is con-

firmed to satisfy all expectations, objectives and is properly verified

for mission success.
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Chapter 5

Scope

Scope is the broadest definition of the program or project: identifying

stakeholders; providing the need, goals and objectives for a project; establish-

ing the basic architecture and developing the concept of operations for the

resulting system. Properly defining the scope of a project or program, estab-

lishes a firm foundation upon which a design solution is fabricated, integrated

and operated to ultimately satisfy stakeholder expectations.

5.1 Stakeholders

A stakeholder is a group or individual who is affected by or is in some

way accountable for the outcome of an undertaking. A customer is a di-

rect beneficiary of the work, while other interested parties affect the project

by providing broad constraints within which the customers’ needs must be

achieved.[1] The identification of stakeholders and their expectations is the

first step in the systems engineering process. The primary purpose of identi-

fying stakeholders and their expectations is to ensure a mutually exclusive set

of goals and objectives for which a project team is focused on achieving with

the intent of satisfying the customer.

For student-based design laboratories, a basic set of stakeholders on any

project includes external organizations (both governmental agencies and/or
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private companies), faculty advisors and, of course, the students. The inter-

esting distinction in a student-based design laboratory is which stakeholder

is considered the customer. From the students’ point of view, the external

organizations are the customers for which a student-based design laboratory

is to deliver a product to satisfy the technical or scientific expectations out-

lined by the external organizations. In this case, the students are stakeholders

interested in the technical challenges or content within a project.

However, from the external organizations’ point of view, a student-

based design laboratory is not necessarily contracted to deliver a product. The

primary expectation is educational. The development of an actual system that

satisfies a specified technical goal is often considered a bonus, not necessarily

an expectation. In this case, the students are actually the customers benefiting

from the educational experience with the external organizations only provid-

ing a basic goal for the students to work towards and some level of mentoring.

Thus, the external organization is simply an interested party. In either case,

the faculty advisor is also an interested party with a purpose to provide ex-

pert guidance directly to the students and act as an interface for the external

organizations.

In light of the educational standpoint, the stakeholder-student relation-

ship is a primary difference between student-based design laboratories and in-

dustry because a student-based design laboratory is not contracted to deliver

an end-product. In addition, the lack of technical expectations on behalf of

the external organizations leads to ambiguous mission goals and objectives.

Instead, an external organization often provides a vague need or goal, and al-
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lows the student-based design laboratory to satisfy the need in whatever shape

or form it desires. Understanding this duality in the stakeholder-student rela-

tionship is crucial to how a student-based design laboratory must derive the

mission goals and objectives.

5.2 Needs, Goals and Objectives

The stakeholders’ expectations specify what is desired as an end state or

as an item to be produced and thus directly identify the need for a project and

derive the goals and objectives for a project.[1] A need explains the rationale

for the system. A goal is the fundamental aim of the project. The objectives

are measurable outcomes necessary to satisfy the mission need.

A student-based design laboratory actually plays a unique role in iden-

tifying a need and defining the mission goals and objectives. Currently in the

aerospace industry, the team that identifies a need and subsequently outlines

goals and objectives is often not the same as the team whom satisfies the need.

For example, the US government and NASA recently identified the need to

develop a new crewed exploration vehicle and defines the goals and objectives

for the vehicle, but most of the design and fabrication work is contracted to

private companies with NASA performing the systems engineering and acting

as a very specific customer with insight and oversight of the project.

Due to the educational aspect, student-based design laboratories per-

form both roles since they are often only provided with a general need from

an external organization, but are left to outline specific goals and objectives

necessary to actually design and build a system. The process of converging
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on a set of objectives for a mission is by no means a trivial task and must

be understood by students to be the most important part of designing the

system. An agreed upon set of objectives to satisfy a need is a powerful force

providing a clear direction for a team of students.

Since student-based design laboratories have considerable influence over

the scope of a project (given that it satisfies the external organizations’ general

need) it is important for students to define a mission that is both interesting

and challenging, but is within the laboratory’s ability considering the con-

straints of a student-based design laboratory, particularly limited personnel,

budget and schedule.

5.3 Example: Paradox Need, Goals and Objectives

The need for the Paradox mission is derived from the NASA JSC Lon-

estar Program. NASA outlined a series of four individual missions to make

significant steps towards an automated rendezvous and docking of two satel-

lites, but said little about the necessary step for each mission in order to

achieve the broad goal by the fourth mission. Often for student-based de-

sign laboratories, high level functional requirements or even objectives are not

provided from the customer and must be developed by the students. Thus,

the specific need for the second mission is allocated from the broad Lonestar

Program need to perform an autonomous rendezvous and docking.

To demonstrate and evaluate enabling technologies for an autonomous

rendezvous and docking mission.
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From the need, students derived general mission goals that focused

on the rendezvous aspect of the mission, leaving close proximity and docking

technologies for the third mission. The rationale was that a rendezvous must

occur successfully first. Thus, the three mission goals for the second mission

are,

1. Develop and test on-orbit sensor and actuator technologies.

2. Develop and test target sensing technologies.

3. Perform a rendezvous.

To achieve the outlined mission goals the specific objectives are outline

below. The mission shall,

1. Evaluate sensor suite performance.

2. Evaluate actuator suite performance.

3. Evaluate guidance, navigation and control capability in per-

forming a rendezvous.

4. Establish a communication crosslink between two satellites.

5. Evaluate a high band-width communications groundlink.

6. Evaluate imaging capability.

5.4 Concept of Operations

The concept of operations describes how the system will be operated

during the life cycle phases to meet stakeholder expectations, mission goals

and objectives. It describes the system characteristics from an operational
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perspective to facilitate an understanding of system goals and to develop re-

quirements.[1] The operations concept should have a broad appeal because the

audience will have a wide range of technical and managerial backgrounds. The

operations concept should tell a story or a series of stories. Graphics, func-

tional flow diagrams and timelines should be extensively used to describe the

concept of operations from multiple points of view. The concept of operations

must encapsulate both the users of a system, such as ground operators, and

the end-users of the mission results. A single graphic will never have the capa-

bility to capture the full operations concept of the system nor will it properly

reflect all aspects for the diverse audience.[12]

A critical component to the scope of a project, and perhaps where

most of the time on project scope is spent, is defining a concept of opera-

tions where the end-product is realized and satisfies the mission needs, goals

and objectives. The student-based design laboratory must work to produce

a high fidelity operations concept that is understood by every team member

and involves the customer as much as possible. The operations concept must

be viewed by the students as an evolving document subject to change as more

information is gained throughout the life cycle. More information consistently

updates the operations concept by further defining execution sequences along

a timeline and often directly translating into software architecture. The op-

erations concept will be referenced through the design period and validated

during the subsystem and system testing alike.
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5.5 Example: Paradox Concept of Operations

The Paradox concept of operations is represented in many different

forms, each conveying similar information in different ways for different au-

diences. A general or high level operations concept is necessary to express

the need and objectives of a mission. At the same time, a very thorough

explanation of the operations concept is necessary for design efforts. The fol-

lowing example shows both the high-level Paradox concept of operations and

a relevant excerpt of the very detailed Paradox mission plan.

5.5.1 General Operations Concept for Paradox

Through an initial scoping exercise to define the concept of operations

that satisfies both the objectives identified and the expectations from NASA,

the nominal operations scenario is described in Fig 5.1. Graphics are excep-

tional communications tools to ensure students are working under the same

concept, especially in the early design phases. A basic graphic begins the pro-

cess of further definition of an operations timeline and functional analysis of

the system itself.

As a brief explanation, the UT Austin and Texas A&M satellites are

expected to launch from an expendable launch vehicle (currently unspecified),

separate and initialize according to the launch vehicle requirements. The satel-

lites will first attempt to establish crosslink communications. Unexpected sep-

aration dynamics between the two satellites and unexpected range capabilities

for the crosslink technology present great challenges. After demonstrating

the crosslink, the UT satellite will activate and evaluate each subsystem and
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Figure 5.1: Pictorial Concept of Nominal Operations for the Paradox Mission.

establish a high bandwidth ground communications to relay the health data.

The ground will confirm all-subsystems-go and command the UT satel-

lite to perform a series of increasingly difficult actions to evaluate the sensors,

actuators, propulsion subsystem and guidance, navigation and control (GNC)

algorithms. After each action, the satellite will downlink pertinent data for

the ground to analyze and command the next action. Once the satellite’s ba-

sic capabilities have been proven, the ground will command the satellite to

initiate the rendezvous sequence with the Texas A&M satellite. If crosslink

communications were discontinued, the two satellite will have to reestablish

crosslink communications before initializing the rendezvous sequence. The UT
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satellite is called the “chaser” and the Texas A&M satellite in this case is the

“target”. Then, the roles will be switched and Texas A&M will perform a

rendezvous sequence as the chaser with respect to the UT satellite.

However, upon further evaluation of stakeholder expectations and due

to the results from the PARADIGM mission, there were increasing concerns

about the level of interfacing required to perform the nominal operations sce-

nario described above. Recall, it was the separation interface between the

UT Austin and Texas A&M satellite that caused mission failure. Therefore,

two further operations scenarios were developed that still satisfied the mission

objectives, but substantially alleviated the need for an interface with Texas

A&M. Often called “open architecture”, Paradox will be required to meet any

of the following off-nominal target operations scenarios.

The first off-nominal scenario is a UT-based architecture whereby the

Texas A&M satellite is replaced by a small passive target satellite also devel-

oped by the UT student-based design laboratory. Such a design choice would

allow for complete control and compatibility of the target satellite. Thus, the

crosslink, rendezvous and proximity operations will be carried out with respect

to the UT target satellite. The second off-nominal scenario should be regarded

more as a contingency scenario to satisfy the mission objectives if the capabil-

ity to rendezvous with a physical satellite is not possible. The scenario is due

to analyses that suggest both a Texas A&M or UT target satellite may drift

too far before a rendezvous sequence can be initiated. In such an event, the

UT satellite will perform what will be termed a “state” rendezvous. A state

rendezvous is defined as a rendezvous with a phantom position and velocity in
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space, which is similar to how a rendezvous would be carried out with respect

to a physical target.

A much more general concept of operations was developed to showcase

these three operations scenarios in the form of a functional flow diagram. The

three different operational scenarios each had a common set of operations;

thus, Fig. 5.2 showcases the general operational functions for each scenario

on the left, and on the right the diagram distinguishes the difference between

each scenario.

5.5.2 Detailed Operations Concept

While expressing the mission concept of operations pictorially or in

a functional flow diagram form is important, there is still a strong need to

elaborate on the details of each mission phase and mode, especially to indicate

the functions of each subsystem during an operational mode.

Within each mission phase, there is a sequence of mission modes. How-

ever, the Paradox operations concept is designed where some of the mission

modes appear within multiple phases, such as the mission mode: Ground Com-

munications. After each mission phase the satellite will downlink pertinent

data and await for the command to continue to the next phase or repeat the

previous mission phase. One mission phase of the Paradox operations concept

was chosen to show the level of detail achieved in the current iteration.

Figure 5.3 is an excerpt of the current Paradox operations document,

specifically the Actuator Evaluation Mission Phase, which is one of many mis-

sion phases depicted in the nominal operational sequence in Fig. 5.2. Within
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Figure 5.2: General concept of operations indicating the three different mission
scenarios for the Paradox mission.

the mission phase, the excerpt shows three mission modes. For each mission

mode, there is a set of five data fields to further define the concept of operations

of the previous pictorial descriptions.

The key aspect to representing the concept of operations in this manner

is to directly map the mission operations to the functional operations of the

subsystems. As indicated by the “Subsystems” field, every powered subsystem

is called out with its associated functional operations mode. These subsystem
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functional modes are further described elsewhere in the Paradox concept of

operations, but for example, “CDH-1” indicates specifically that the Command

and Data Handling subsystem executes current mission mode and/or ground

commands, schedules events, manages all mission data. Such fidelity in the

concept of operations cannot be accomplished without first iterating through

most of the systems engineering practices outlined within the thesis. Thus,

Fig. 5.3 showcases a concept of operations after multiple iterations in the

Paradox mission design.
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3.4 Actuator Evaluation

3.4.1 Rotation Series

Rationale Partial satisfaction of mission objective.

Trigger Ground command.

Subsystems CDH-1 EPS-1 GNC-2

Description To initially evaluate the attitude actuators, the satellite

will be commanded through a series of predetermined

rotations.

References None.

3.4.2 Sun Imaging

Rationale Partial satisfaction of mission objective.

Trigger End of previous mission mode.

Subsystems CAM-2 CDH-1 EPS-1 GNC-2

Description To further evaluate the attitude actuators, the satellite

will be commanded to point the camera at the sun for

imaging. The external reference will independently ver-

ify the sensor and actuator performance.

References None.

3.4.3 Momentum Management

Rationale Mission support.

Trigger End of previous mission mode.

Subsystems CDH-1 EPS-1 GNC-3

Description To unload momentum stored in the reaction wheels and

prevent saturation for mission operations. The mode

will be initiated after end of a previous mission mode

or unless otherwise directed by the ground or on-board

momentum management system.

References None.

Figure 5.3: Section of the Paradox Concept of Operations detailing three
different mission modes within the Actuator Evaluation mission phase.
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5.6 Architecture

The concept of operations gives the proper perspective for which the

system-level functional requirements are realized. That is, from the mission

objectives flow derived functions for the system to perform, and it is within

the concept of operations where the system functions collectively act to satisfy

the mission need. Without such a construct, a capability of any system is just

a trivial artifact. Thus, the concept of operations gives rise to a system archi-

tecture for which the abstract notion of high-level functions translates into a

conceptual hardware solution. A system architecture is the overall design or

structure of a system, including the hardware and the software required. Defin-

ing the system architecture is the link between needs analysis, project scoping

and functional analysis and the first descriptions of the system structure.

A primary aspect of a student-based design laboratory is its innovation.

Students often do not know how something has been achieved before and there-

fore devise new approaches to a problem. Besides providing an educational

experience, external organizations are often attracted to student-based design

laboratory for their innovation. Specifically, the SDL as an engineering labo-

ratory, focuses on technology demonstration missions as opposed to missions

that support a scientific payload. That is, all of the missions to date have

a need to demonstrate enabling technologies that will be used in future mis-

sions. In the context of the SDL projects, the mission architecture studies are

primarily driven by what and how much enabling technology the laboratory

is interested in supporting for a single mission. On the other hand, missions

supporting a science payload are less inclined to demonstrate new technolo-
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gies that may jeopardize the science. Unless the science payload requires new

supporting technology the mission architecture is not focused on technology,

but on the composition of existing technology to achieve the science goals.

For technology demonstration missions, a system architecture is per-

haps the best tool for student-based design laboratories to evaluate the tech-

nological aspects of a project. For example, a concept of operations may

require that the system provide a communications capability to a ground sta-

tion. Would the student-based design laboratory like to purchase a commercial

off-the-shelf (COTS) product to satisfy the high-level function or would the

students like to develop a new technology, say a software-defined radio? Much

of these decisions will be based on the expertise and interests of the student-

based design laboratory, but review of the mission objectives and concept of

operations might require such technology developments. It is then incumbent

on the students to evaluate what technology developments are necessary given

the mission and what can be achieved by integrating COTS components. Ar-

chitecting a system involves making such decisions early in the life cycle.

A simple and valuable metric by which to judge technologies being

implemented in a fledgling mission architecture is the Technology Readiness

Level (TRL) Scale developed by John C. Mankins[13]. The scale measures the

maturity of a specific technology. The range goes from a TRL 1 indicating that

basic principle have been observed to a TRL 9, which means the technology

has been demonstrated in an operational environment successfully. The full

scale will not be explicitly stated here, but will be used. When constructing

an architecture for a mission, the TRL scale is an extremely useful metric to
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initially judge design solutions with the primary function of keeping the project

scope in the realm of possibility. Often student-based design laboratories want

to develop a whole range of new technologies, but it is important to decide on

only a few technology developments per mission. Using the TRL scale when

architecting a mission will provide a clear rationale for developing the certain

technologies for the mission.

5.7 Example: Paradox GNC Architecture

5.7.1 Lonestar Program GNC Architecture

The Lonestar Program architecture is defined as the technology de-

velopments chosen over the remaining two to three missions to achieve the

automated rendezvous and docking by the fourth individual mission. The

individual mission architectures are defined as the technologies that will be

implemented as a solution to the program architecture. Due to the nature of

the NASA Lonestar Program, the Guidance, Navigation and Control (GNC)

subsystem will drive mission success and thus will be the focus of this example.

Keep in mind, it is likely many more technologies will need to be developed

over the mission series and the architecture for each will need to balance the

technology development between the GNC subsystem and other subsystems.

The Lonestar Program architecture, as defined by the SDL, is such

that an automated rendezvous and docking could be successfully achieved by

the third mission, but in the event the goals are not fully satisfied, a fourth

mission can be used as a risk mitigation strategy to effectively achieve the

customer’s expectations. Then, the GNC architecture for Paradox must be
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viewed in context with respect to the spread of the technology development

over the series of missions. Fig. 5.4 depicts the GNC technology architecture

for the Lonestar Program.

Figure 5.4: Lonestar Program GNC architecture to achieve rendezvous and
docking.

Each mission takes steps to develop the necessary technology towards

the automated rendezvous and docking. Expanding on PARADIGM’s goal

to test the NASA DRAGON GPS receiver for picosatellite navigation, Para-

dox will implement attitude determination and control, relative navigation,

semi-autonomous flight software and propulsion capabilities determined as a

necessary progression towards satisfying program goals. Thus, the Paradox
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sensor suite will be composed of the DRAGON GPS receiver as well as other

external and inertial sensors for attitude and relative state estimation. An

actuator suite will handle attitude control with momentum exchange devices,

and the propulsion subsystem will enable the satellite to change its orbit. In

addition, on-board flight software will need to determine the position, veloc-

ity and attitude given the sensor measurements, determine what maneuvers

to make and when, and then command the actuators to achieve the desired

maneuvers.

Mission 3 implements the remaining technologies necessary for an au-

tonomous rendezvous and docking, including the docking and undocking mech-

anism, high-fidelity relative navigation, full-autonomous flight software and

precision propulsive capability.

Mission 4 exists to address extended mission goals from NASA, or to

fulfill Lonestar Program mission goals not demonstrated in Mission 3. Thus,

the fourth mission will either incorporate a different architecture with different

technologies depending on a new set of mission goals, or will be composed of

a similar GNC architecture as Mission 3. Nevertheless, the Mission 4 archi-

tecture will need to be properly modified depending on the results of Mission

3.

5.7.2 Mission 2: Paradox GNC Architecture

The Paradox team must decide how to architect the second mission

to satisfy the overall Lonestar Program GNC architecture. One possible mis-

sion architecture is to develop all of these technologies from scratch. Sensors
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and actuators would be designed and fabricated specifically for the mission

along with the propulsion subsystem and the flight software. Another possible

architecture is to purchase any or all of the technologies, given their avail-

ability. Classified as a “make-buy” decision, these are often a crucial aspect

of architecting a system for a technology demonstration mission. A student-

based design laboratory must make a “make-buy” decision with respect to the

available laboratory resources, such as personnel, “in-house” expertise and

schedule, to ensure the technology development is within the capability of the

laboratory. These decisions are often made by the student leadership with

extensive input from faculty.

The SDL as a student-based design laboratory is much more interested

in designing and integrating a system to satisfy a mission than developing indi-

vidual technologies, especially if there are commercially available technologies

on the market. The current personnel level and schedule suggest that the SDL

has the resources to perform only a few technology developments from scratch.

In addition, the aerospace department at UT has an expertise in developing

GNC algorithms for flight software, but does not have experience designing

and fabricating flight quality sensors and actuators. Thus, Paradox is adopt-

ing the strategy to purchase as much commercial hardware as possible while

designing the flight algorithms.

The primary reason for the decision is due to the technology readiness

of the available hardware. Student-based design laboratories still must show

technology development to a TRL of 6 (Demonstration of model or prototype

of the technology in a relevant environment[1]) by Preliminary Design Review
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(see Chapter 12) as suggested by NASA for all projects. Any technologies

developed from scratch within the SDL would currently have a TRL between

2 to 4 (Breadboard validation of a technology in a laboratory environment[1]).

Thus, more time and personnel would be needed to properly raise the TRL

before flight. An online hardware search recognized a handful of individual sen-

sors and actuators with flight heritage and a few sensor and actuator packages

that fit the constraints. Thus, the sensor and actuators found commercially

have a TRL from 5 to 7.

On the other hand, there are few commercially available propulsion sub-

systems for the desired application. At best there is an array of components

from which a significant design effort would be required. However, a significant

technology development from The Aerospace Corporation was found, but re-

quired a modification. In fact, the Aerospace Corporation’s propulsion system

was flight tested, but due to the necessary modifications the TRL would only

be a 7 (Technology demonstration in an operational environment).[8]

The GNC architecture for Paradox resulted in performing significant

technology developments in flight software development and the propulsion

subsystem. The sensor suite and attitude actuation suite will be composed of

commercial products, thus the work is reduced to just integration and testing.

Given the broad goal of the Lonestar Program, the SDL architected

the technology developments necessary to achieve the NASA’s expectations

over the allocated number of missions. Then, given the program architecture

allocated to Paradox, the specific GNC architecture was determined using the

TRL scale as the primary metric. Using the TRL scale in this manner is
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an effective way for a student-based design laboratory to make architecture

choices with respect to available resources.
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Chapter 6

System Hierarchy and Interfaces

6.1 System Hierarchy

NASA defines the system hierarchy or the product-breakdown structure

(PBS) as the framework and interrelationships of elements in a system.[1]

The concept of operations and the architecture development from the mission

scope defines the overarching approach to satisfy the mission, including major

system elements and technology. Thus, scope is a direct input to the systems

hierarchy. The base of the hierarchy defines the final products, ie. hardware

components or software deliverables, that are integrated to create the final

system to meet mission objectives. Alongside the system hierarchy, NASA

defines a work-breakdown structure (WBS) as the hierarchical breakdown of

the work necessary to complete the project.[1] Naturally, the WBS contains the

system hierarchy as the full product to be delivered, but also includes the work

necessary to integrate and produce a working system, such as management,

system engineering, testing, etc.

Student-based design laboratories do not have the personnel to dedi-

cate solely to management. Identified managers, systems engineers, or other

student leaders are often simultaneously the most proficient at design and tech-

nical analysis. Thus, the leadership will find themselves developing designs, as

well as managing requirements, students and the budgets.[7] A well developed
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system hierarchy will identify students with specific deliverables and simulta-

neously acts as a WBS. All the work must directly support the development

of the system as all the tasks are connected to the deliverables defined in the

hierarchy. Students are expected to perform design work, trade studies, cre-

ate software, fabricate prototypes and perform testing in pursuit of the final

deliverable identified in the system hierarchy.

Unlike large aerospace organizations, student-based design laboratories

can not compartmentalize work functions, such as design, analysis, testing

and fabrication. Instead, the same student that designs a component or sub-

system must also perform the proper analysis and testing before ultimately

fabricating the final design and participating in integration. In this way, a

student-based design laboratory has a very flat personnel hierarchy and recog-

nizes few student leaders. As a simple visual description of the entire system,

the system hierarchy for a student-based design laboratory defines the deliv-

erables to produce, the relationship between the deliverables, the work to be

performed and the student(s) to perform the work. The identified student

leaders are expected to work on the technical engineering design throughout

the system hierarchy.

The systems hierarchy, when viewed as a depiction of the product sys-

tem and the work for a student-based design laboratory, is constantly evolving.

Herein lies an intimate connection between the technical design and systems

engineering. Note, it is not desirable to fully define the system hierarchy ini-

tially because it will stifle the student creativity. Instead, it is preferred to

allow the student engineers to define the component level and update the hi-
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erarchy to reflect progress. Again, the system hierarchy is expected to evolve

through the project life cycle.

6.2 Example: Paradox System Hierarchy

As a basis for both the design solution and a work-breakdown structure,

the top-level system hierarchy for Paradox is depicted in Fig. 6.1,

UT

Program:

University:

Mission:

System:

Subsystem:

NASA Lonestar Program (P)

A&M

PARADIGM PARADOX

(M)

Mission 3 Mission 4

Launch Vehicle 

(LV)

Satellite

(SAT)

Ground Support 

(GS)

Simulated 

Environment (SIM)

CAM CDH COM PRPEPS GNC INT

Figure 6.1: System Hierarchy for the Paradox Mission.

Beginning with the customers’s definition of the mission, Fig 6.1 de-

fines the hierarchy through the to satellite subsystems (acronyms are defined

in Table 6.1). For Paradox, there is an additional hierarchical level entitled

“University” due to the nature of the Lonestar Program. It is understood

that Texas A&M will have a similar system hierarchy. In addition, for the
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Paradox mission there are other identified systems besides the satellite. Not

all of the systems supporting the Paradox mission could be easily represented

in Fig. 6.1.

The launch vehicle includes the launch vehicle separation device, known

as the Poly-Picosatellite Orbital Deployer (PPOD), which integrates the satel-

lite with the launch vehicle and deploys the satellite after launch. The ground

support system will be simultaneously designed with the satellite for both elec-

trical and physical support, as well as communications support as a ground

station once the satellite is on-orbit. The simulated environment is separately

identified due to the nature of the Paradox mission. Heavy simulation testing

will be required to verify the flight software and an accurate environmental

model will be necessary to test expected conditions.

The satellite subsystems shown in Fig. 6.1 are defined in Table 6.1.

Table 6.1: Paradox satellite subsystem definition.

CAM Camera
CDH Command and Data Handling
COM Communications
EPS Electrical Power Subsystem
GNC Guidance, Navigation and Control
INT Integration (Structures)
PRP Propulsion

The three letter acronyms are by convention, and are useful for configura-

tion management and consistent documentation (see Chapter 11). Note, the

Integration subsystem (INT) is classically the subsystem for structures and

mechanisms found on most satellite hierarchies. The choice to rename the
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subsystem Integration is due to a common misconception students have about

the work related to the “structures” subsystem. Often students only focus

on designing a structure that can sustain launch stresses and vibrations. In

the end, students forget to mount hardware components and ultimately a re-

design is necessary. As the Integrations subsystem, students understand that

it is their first priority to design structures and mechanisms around the other

subsystems’ hardware components and then prove the structure will survive

launch.

The satellite subsystems are separated in this manner because much of

the design and fabrication can be performed independently of the other sub-

systems as long as the interfaces are managed. Each student is responsible for

developing the satellite system to satisfy the mission, but individual students

are responsible for the different subsystems as noted by the hierarchy. For

student-based design laboratories, the system hierarchy identifies deliverables

and the students responsible for specific deliverables, but it is implied that the

students are also responsible for the technical analysis to support the design,

prototyping, fabricating and testing necessary for the deliverable.

To illustrate the continued breakdown, Fig. 6.2 represents the GNC

subsystem hierarchy and depicts the further delegation of tasks to the student

team. Further iteration is needed to refine the system hierarchy, but at the

base of the hierarchy will be all the hardware and software components.
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Figure 6.2: GNC subsystem hierarchy for the Paradox Mission.

To make the system hierarchy and WBS useful and visible to the stu-

dents, Paradox has prominently displayed the hierarchy in the SDL. With a

laminated finish and dry erase markers, the hierarchy is updated and student

names are able to be added and removed as needed throughout the semester.

Implementing the hierarchy in this way provides the project with four neces-

sary attributes;

1. Provides students with a reference to the entire system.

2. Provides a sense of how an individual student and their work fits with

respect to the entire system.

3. Provides a sense of responsibility between students for their deliverables.

4. Increases communication between students.

The hierarchy depicted in Fig. 6.1 is different from the photo in Fig. 6.3.

The students actively modified and iterated on the hierarchy until it accurately

reflected the project. Figure 6.3 showcases the active evolution of improving

the system hierarchy over time.
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Figure 6.3: Paradox implementation of the system hierarchy.

6.3 Interface Definition and Control

An interface is defined as a common boundary between two or more

functions and applies at many different levels within a project.[1] Within a

project, work is often partitioned because tasks can be done simultaneously or

require a specific skill set. Interface definition outlines the way in which two

functions interact and is often documented through an Interface Requirements

Document (IRD). An IRD is a document that defines all physical, functional,

and procedural interface requirements between two or more end items, ele-

ments or components of a system and ensures compatibility. As opposed to an

Interface Design Document (IDD), which is a unilateral document controlled

by the end-item provider, the IRD provides the details of the interface for a
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design solution that is already established.[1]

The system hierarchy depicts the existence of an interface between sub-

systems and components as the connecting lines being integrated into a system

one level above. Unfortunately, these lines are not explicit about subsystem or

component interfaces. Interfaces are the glue for a system and interface defi-

nition facilitates the design process. For a student-based design laboratory, an

IRD and IDD are not necessary, except with respect to external organizations.

IRDs within a student project only add extra management work to ensure

documents are consistently updated for basic interfaces between subsystems.

Instead, interfaces must be embedded within the design. Similar to

an IRD, interfaces should be defined and managed by a single entity. Thus,

the functions are consolidated within subsystems to minimize the number of

interfaces and requirements. That is, grouping the interface responsibilities

into a few subsystems is important in order to centralize the interface definition

and design. For example, a structural subsystem will handle all physical and

wire harness interfaces, while a command and data handling subsystem will

define and design all data interfaces. Performing interface management in

this way is possible due to the generally flat personnel hierarchy within a

student-based design laboratory. Defining and managing interfaces within a

student project in this manner will increase chances of success while preventing

overhead documentation.
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6.4 Example: GNC Interface Definition

The guidance, navigation and control (GNC) subsystem is a good ex-

ample for interface definition and management as it interacts with most of the

subsystems defined on Paradox. For the Paradox project only four of the six

subsystems own interfaces: CDH, EPS, GNC and INT. The GNC subsystem

is responsible for determining when, where and how to execute maneuvers for

meeting mission objectives, hence the GNC subsystem is an excellent subsys-

tem to manage interfaces and embed their design. Ownership indicates that

the subsystem is responsible for understanding the interface between any two

subsystems and appropriately developing requirements, designing and fabri-

cating the interface as part of the overall subsystem design.

The GNC interfaces can be categorized into three different types: physi-

cal, electrical and data. Figure 6.4 depicts the interfaces to the GNC subsystem

with respect to the rest of the satellite system. The interfaces are represented

as an N2 diagram. N2 diagrams are often used to develop system interfaces;

system components or functions are placed along the diagonal, outputs run

along the horizontal axis and inputs to a subsystem are along the vertical

axis. Figure 6.4 also depicts the interfaces between the hardware elements

within the GNC subsystem. Note Figure 6.4 only depicts the interfaces with

respect to the GNC subsystem for clarity. A full N2 diagram of the satellite

system would include other interfaces such as power being provided from EPS

to COM. Table 6.2 then further describes each depicted interface in Fig. 6.4.

65



Figure 6.4: Basic interface definition for the GNC subsystem with respect to
every other subsystem.

Table 6.2: Subsystem interface definition with respect to the GNC subsystem.

Subsystem Ownership Description

CAM N/A No direct interface.
CDH CDH A mission objective is provided for ex-

ecution and pertinent mission data is
returned.

COM GNC Receives relative navigation sensor
data communicated from the target
satellite.

EPS EPS Power is provided to the GNC hard-
ware.

INT INT GNC hardware is mounted to the main
satellite structure for support. Wire
harness provides electrical connections.

PRP GNC Pressure and temperature data is re-
ceived. Commands to open or close
valves to perform orbit maneuvers.
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The interface definition and management process is recursive. Within

the GNC subsystem itself, interfaces are handled similar as at the subsystem

level, where the flight computer owns the data interface between the sensors

and attitude actuators. However, further technical design is needed to define

detailed interface solutions. These initial interface definitions will become, for

example, design drawings for mounting the flight computer circuit board to

the main satellite structure and a messaging protocol for data transfer. Never-

theless, outlining the interfaces to this extent and communicating ownership to

the student-based design laboratory will enable proper interface management

and successful integration.
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Chapter 7

Requirements

7.1 Functional and Performance Requirements

The requirements definition process transforms the stakeholder expec-

tations into a definition of the problem and thus a design solution.[1] A major

purpose for requirements is to clearly communicate mission expectations all

the way down to manufacturing specific instructions such that the proper

product is designed, fabricated and implemented. Developing requirements

starts with defining functional requirements. “Functional requirements define

what functions need to be done to accomplish the objectives.”[1] Primarily

derived from the mission needs, goals and objectives, functional requirements

also come from the concept of operations (see Section 5.4). A complete set of

functional requirements properly specify all intended uses or functions of the

product over its lifetime.

Functional requirements describe “what”, but performance require-

ments define “how well” the system must perform the functions. “Performance

requirements define quantitatively how well the system needs to perform the

functions.”[1] Trade studies (discussed in Chapter 8) are the primary means

to quantify performance requirements; however, they are not the only way.

Both functional and performance requirements are written specifically to be

independent of the design solution and only outline the engineering problem
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that must be solved. The intent is to leave designers and engineers to develop

an optimal solution based on technical data and analysis.

Distinctly different from requirements, constraints are imposed by an

existing system, environment or stakeholder. Constraints often enter into the

requirements development through the mission architecture description be-

cause of interfaces with an existing systems or the environment of operations.

The system design is then required to satisfy the imposed constraints. The

difference from requirements is that constraints are typically not able to be

changed based on tradeoff analyses.[1] Thus, an engineer has no control over

constraints except in how to design the system to meet them.

Initially, requirements are written to outline the problem and the gen-

eral use of a product for designers to develop a design. Once a conceptual

design is established, requirements are written to explicitly outline the en-

gineering problem that shall satisfy the functional and performance require-

ments. Last, fabrication and integration requirements, commonly referred to

as specifications, are written to detail how the design is to be manufactured

and assembled.

The primary reason for each type of requirement in an aerospace organi-

zation is due to the exchange between different functions people perform. Re-

quirements are crucial to maintain translation between these different groups.

For student-based design laboratories, the consecutive levels of requirements

are not necessary. A small student group is expected to perform at all levels

of a project by working on design, fabrication, testing, integration and system

testing. Ideally the student designing hardware is also fabricating and testing
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the hardware. Thus, specification development after the design formulation is

not necessary. Documentation of the actual design is more critical, due to the

high turnover rate, than writing specifications of the design that meets the

system functional and performance requirements.

Nevertheless, functional and performance requirements development is

a key aspect to the systems engineering of a project within a student-based

design laboratory because it is the direct link between customer expectations,

technical analysis and the design solution. They essentially provide a com-

munication platform for performing trade studies and functional analysis with

the ultimate intent of producing the design solution.

7.2 Rationale

Often, a requirement may not appear to directly support the mission;

thus, a rationale provides additional information to clarify the intent of a

requirement.[1] Requirement rationales are used to document the purpose, as-

sumptions, constraints and analysis built into the requirement as it is written.

The purpose of a requirement can range from directly supporting a mission

objective to defining the relationship between other systems and subsystems

without implying a design solution. Naturally technology development, con-

cept of operations and architecture, directly translate into requirements and

must be stated within the rationale as the source for the requirement. In ad-

dition, requirements are derived from external constraints, such as from the

operating environment or an existing system. These constraints must be stated

in the rationale and referenced with supporting documentation or interface de-
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sign documents. Last, analysis plays a large part in determining performance

requirements. Often the rationale for the performance requirement will ref-

erence the analysis which supports the measure of performance cited in the

requirement.

For a student-based design laboratory a requirement is worthless with-

out a rationale. Student-based design laboratories have a high enough turnover

rate for work to get lost as students move on and off a project from semester to

semester. As new students join a project they bring with them different ideas

and designs that meet the same mission need, such is the very nature of the

highly innovative environment. The high turnover rate can cause a significant

amount of rework because students have a tendency to personalize the design

to what makes sense to them. If the previous work is not properly rationalized,

then students will redo the design, analysis and test. Therefore, requirements

must be supported with rationale because the originator of the assumptions,

constraints and analysis that went into the requirement may have recently

graduated.

7.3 Traceability

Traceability is the most difficult part of writing requirements, but it

ensures that each requirement is necessary. To trace a requirement means to

identify a set of requirements that map directly to one or more mission ob-

jectives. That way every derived requirement has either a direct or indirect

purpose of supporting a mission objective. If project requirements are not

properly traced, requirements can be orphaned without a clear reason to sup-
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port the mission. Also, someone’s favorite requirement, affectionately called

“pet” requirements, can find themselves unnecessarily imposed on the design.

Properly tracing requirements will prevent this requirements creep.

Requirements creep is the onset of additional requirements throughout

the development life cycle. The design must constantly take into account

added requirements regardless of the maturity. Requirements creep has been

attributed directly to the extended development life cycle of FASTRAC.[7] To

prevent requirements creep, a student-based design laboratory must actively

engage all stakeholders to ensure expectations are being meet early in the

life cycle. In addition, managing requirements and tracing the flow-down of

requirements will prevent orphan requirements from creeping into a project.

Traceability of requirements can be even more difficult if professional

software tools are not provided. A student-based design laboratory cannot

afford a dedicated project requirements expert; all students must work on

requirements. A proper numbering sequence, some level of formatting and

direction provided by the student leadership should allow for the requirements

to be easily traced from the mission need to the component level. The SDL

uses Microsoft®Excel to capture all of the requirements information.

7.4 Example: Allocation of Functional Requirements
from Mission Objectives

The mission need, goals and objectives for the Paradox mission are

stated in Section 5.3. The objectives are restated as requirements in Table 7.1.
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Table 7.1: Paradox Mission Objectives.

ID Mission Objective “The mission shall...”

MO-1 Evaluate sensor suite performance.
MO-2 Evaluate actuator suite performance.
MO-3 Evaluate guidance, navigation and control capability in

performing a rendezvous.
MO-4 Establish a communication crosslink between two satel-

lites.
MO-5 Evaluate a high band-width communications

groundlink.
MO-6 Evaluate imaging capability.

In addition to the six nominal mission objectives in Table 7.1 (per cus-

tomer expectations), three extended mission objectives were determined based

on the interests of the SDL and other stakeholders as described in Table 7.2.

Table 7.2: Paradox Extended Mission Objectives.

ID Extended Mission Objective “The mission shall...”

ME-1 Adhere to the picosatellite form factor definition.
ME-2 Function autonomously or with limited input from

ground controllers.
ME-3 Rendezvous with a separate physical satellite.

Table 7.3 presents the first twenty-one systems functional requirements

for the Paradox satellite. A first and obvious functional requirement derived

from all of the objectives is for the satellite to provide all electrical components

with power. None of the mission objectives could be satisfied without providing

power to the sensors, actuators or communications subsystems. Thus, the

requirement is,
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The Paradox satellite system shall provide power to electrical compo-

nents.

Next, not only to satisfy a mission objective, but to also provide data

for ground verification of the mission objectives, the satellite must provide

ground communications. Thus the following functional requirement is derived

from all six mission objectives,

The Paradox satellite system shall provide a communication capability

to a ground station.

The process is similar for all of the functional requirements allocated for

the satellite system. Following the structure of the Paradox system hierarchy in

Section 6.2, Table 7.3 lists a subset of the entire set of functional requirements

for the satellite system. Note that the requirements are directly traceable to

either a mission objective (MO), an extended mission objective (ME) or to an

operational requirement (OPS) derived from the development of the concept

of operations as seen in Section 5.4.

Table 7.4 provides examples of rationales for five of the functional re-

quirements in Table 7.3.
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Table 7.3: Paradox Satellite (SAT) System Functional Requirements.

ID Requirement “The Satellite system shall...” Parent Req.

SAT-1 Provide power to electrical components. MO-1,2,3,4,5,6
SAT-2 Provide communication capability to a ground

station.
MO-1,2,3,4,5,6

SAT-3 Provide cross-link communications with a sep-
arate satellite.

MO-3,4

SAT-4 Perform a rendezvous. MO-3
SAT-5 Determine its position. MO-1,3
SAT-6 Determine its velocity. MO-1,3
SAT-7 Determine its acceleration. MO-1,3
SAT-8 Determine its attitude. MO-1,3
SAT-9 Determine its angular velocity. MO-1,3
SAT-10 Perform translational maneuvers. MO-2,3
SAT-11 Perform rotational maneuvers. MO-2,3
SAT-12 Process subsystem data. MO-1,2,3,4,5,6
SAT-13 Execute commands. MO-1,2,3,4,5,6
SAT-14 Provide video imaging capability. MO-1,6
SAT-15 Provide a physical interface for subsystem hard-

ware components.
MO-1,2,3,4,5,6

SAT-16 Provide structural support to subsystem hard-
ware components.

MO-1,2,3,4,5,6

SAT-17 Adhere to all specified launch vehicle con-
straints.

MO-1,2,3,4,5,6

SAT-18 Adhere to CubeSat form factor. ME-1
SAT-19 Perform mission objectives autonomously. ME-2
SAT-20 Perform a rendezvous with a separate physical

satellite.
ME-3

SAT-21 Provide health data as requested by ground mis-
sion control.

OPS-1
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Table 7.4: Rationale for the Paradox Satellite System Functional Require-
ments.

ID Rationale

SAT-1 Every subsystem utilizing electronics during the mission
will need power.

SAT-2 To determine mission success, telemetry from the satel-
lite must be communicated down to a ground station for
post processing.

SAT-3 To satisfy the mission objective to evaluate communi-
cations with a separate satellite and to relay data for
purposes of rendezvous.

SAT-4 To evaluate the vehicle’s sensor, actuator and GNC ca-
pabilities, the vehicle will attempt a rendezvous and the
system’s performance will be evaluated.

SAT-5 To satisfy the mission objective to evaluate the sensor
suite and GNC algorithms.

Functional requirements may also be allocated from mission objectives

to other systems identified in the system hierarchy, such as ground support

equipment. In addition, these satellite functional requirements are then allo-

cated to the subsystem level. For example, Table 7.5 showcases the further

derivation of functional requirements to the electrical power subsystem,
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Table 7.5: Paradox Electrical Power Subsystem Functional Requirements.

ID Requirement ”The Electrical Power Subsys-
tem (EPS) shall”

Parent
Req.

EPS-1 Provide power to subsystems. SAT-1
EPS-1.1 Provide power source. EPS-1
EPS-1.2 Provide power storage. EPS-1
EPS-1.3 Provide power to subsystems at specified volt-

ages.
EPS-1

EPS-1.4 Provide power to subsystems at specified cur-
rents.

EPS-1

EPS-2 Provide electrical inhibits between the power
source, power storage and electrical loads prior
to separation from launch vehicle.

SAT-18

EPS-3 Provide health data as requested. SAT-21

A similar process is carried out to derive functional requirements at

any level within the system hierarchy. The next step is to quantify a system’s

ability to perform all of these allocated functions. For the example EPS sub-

system above, the next questions to ask are: “How much and over what time

is power required to be produced on-orbit?” or “How much power storage is

needed to perform the full mission?”.

7.5 Example: Derivation of Actuator Performance Re-
quirements

Once functions are allocated to the various levels of the system hi-

erarchy, performance requirements further define the system to be designed

and built. Recall the following satellite system functional requirements from

Table 7.3,
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SAT-10 Perform translational maneuvers.

SAT-11 Perform rotational maneuvers.

The SAT-11 functional requirement is allocated to the guidance, navigation

and control (GNC) subsystem, but there is no indication as to what kind

of maneuvers and how fast the maneuvers must take place to satisfy mission

objectives. Thus, performance requirements must be derived to specify quanti-

tatively how well the rotational maneuvers shall take place. In the first writing

of performance requirements, they are often augmented with the acronym To-

Be-Resolved (TBR) primarily because the requirements have not been quanti-

fied at the time. That is, the technical analysis needs to be completed before

populating the performance requirement with numbers. Table 7.6 and 7.7

showcases the first

Table 7.6: Paradox GNC Subsystem Requirements with TBRs.

GNC-1 Perform rotational maneuvers. SAT-11
GNC-1.1 Perform rotational maneuvers at a minimum

rate of TBR rad/s (TBR deg).
GNC-1

GNC-1.2 Reject environmental disturbance torques of at
least TBR N-m.

GNC-1

GNC-1.3 Maintain an attitude with a maximum error of
TBR rad (TBR deg).

GNC-1

The SAT-11 requirement is allocated to the Propulsion subsystem (PRP)

and the performance requirements further define the satellite function.
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Table 7.7: Paradox Propulsion Subsystem Requirements with TBR.

PRP-1 Perform translational maneuvers. SAT-10
PRP-1.1 Have a total ∆V capacity of TBR m/s. PRP-1
PRP-1.2 Maneuver with a minimum force of TBR N. PRP-1

The derivation of performance requirements is one of the many intimate

links between the systems engineering effort and the technical design effort. In

order to quantify the performance requirements, trade studies and sensitivity

analyses must be performed. The trade studies for these performance require-

ments are presented in the next chapter, Section 8.4. A level of iteration will

be necessary to fully derive all requirements. Once the proper analyses have

been performed, the requirements are populated with numbers. Therefore, the

requirements from Table 7.6 and 7.7 are quantified as Table 7.8 and 7.9 show,

respectively.

Table 7.8: Final Paradox GNC Subsystem Requirements.

GNC-1 Perform rotational maneuvers. SAT-11
GNC-1.1 Perform rotational maneuvers at a minimum

rate of 0.011 rad/s (0.6 deg/s).
GNC-1

GNC-1.2 Reject environmental disturbance torques of at
least 2 × 10−5 N-m.

GNC-1

GNC-1.3 Maintain an attitude with a maximum error of
0.087 rad (5.0 deg).

GNC-1

Table 7.9: Final Paradox Propulsion Subsystem Requirements.

PRP-1 Perform translational maneuvers. SAT-10
PRP-1.1 Have a total ∆V capacity of 15.0 m/s. PRP-1
PRP-1.2 Maneuver with a minimum force of 1.0 N. PRP-1
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Each of the requirements in Tables 7.8 and 7.9 will include a ratio-

nale briefly explaining the analysis to support the performance specification

as well as a reference to the documented analysis, if any. The SDL requires

students not only to be responsible for specific subsystem design and fabrica-

tion, but to also be responsible for maintaining the subsystem requirements.

The requirement maintenance includes performing technical analysis, writing

rationales, ensuring traceability, and other subsequent requirement meta-data

that is further covered in Chapter 11.
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Chapter 8

Trade Studies

Trade studies are the technical analysis that support design decisions.

Trades studies are the conduit from which design decisions are made and re-

flected in the systems engineering.[1] In fact, aside from designing, most of the

effort for students will be performing trade studies to inform design solutions

that meet mission requirements and constraints. Often trade studies and sys-

tem design are concurrent activities. Both systems engineers and designers

will perform trade studies. However, it is the job of the systems engineer or

the student leadership to evaluate the impact to the overall system of a trade

study result. The purpose of a trade study is to:

� Further bound the box in which to design. (Develop Requirements)

� Answer questions necessary for the design effort. (Explore Design Space)

� Evaluate design alternatives to decide the optimal for the system. (Com-

pare Designs)

8.1 Trade Study Process

To perform a trade study there are eight basic steps[1]:
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1. Identify the objective(s) of trade study result(s).

2. Review and state assumptions, constraints and requirements that impact

the trade study.

3. Define evaluation criteria.

4. Identify design alternatives.

5. Evaluate design alternatives against established criteria.

6. Determine decision and record result(s).

7. Perform system sensitivity analyses.

8. Iterate.

To explain briefly each of these steps;

Objective(s). Each trade study requires time and a dedicated engi-

neer; thus, the objective for the trade study must be clear and the expected

result(s) must support the design effort. In addition, the student leadership

must recognize the purpose and need for the trade study. Otherwise, the trade

study is a waste of both personnel effort and time. The specific trade study

objectives should be based on one of the three general purposes for a trade

study, noted earlier.

Assumptions and Constraints . Rarely does a trade study result

apply globally. For example, a choice to size a propellent tank at 0.1 m2

is not fundamental to all aerospace vehicles, instead the trade study result

makes sense only in the context of the assumptions and constraints of the

specific mission. An assumption is made in the trade study to simplify the

analysis, whereas a constraint is externally imposed on the analysis from either

an aspect of the mission or another external system not being designed. Thus,
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every trade study is accompanied with assumptions and constraints, and are

often only reasonable when considering pertinent system requirements. It is

very important to convey and document the assumptions, constraints and

requirements.

Evaluation Criteria . Evaluation criteria is the key to correctly per-

forming any trade study analysis. Criteria are the measures by which you

evaluate the options. For the case when a trade study needs to answer a

question or define a requirement, the criteria is rather the performance index

to quantify. Criteria is often quantitative, but can also be qualitative. In

addition, trade studies must take into account not just the engineering-based

criteria, such as performance or mass, but also customer-based criteria, such

as schedule or cost. Keep in mind not all criteria are created equal and ranking

criteria will help in making a decision between two options. Last, an important

point and easy mistake, when selecting the evaluation criteria choose criteria

that does not favor one or a few of the options. For example, a trade study’s

objective is to select a power source for a crewed mission to Mars and one of

the evaluation criteria is “radiation hazard”. Given just three design options:

nuclear, solar and batteries; it is clear that the criteria of “radiation hazard”

will prejudice the trade study against a nuclear power source. Instead, the

criteria should be “safety” where all safety concerns could be evaluated for all

three options.

Design Alternatives . Identifying design alternatives is exactly where

systems engineering and the technical design meet. Depending on the mission,

finding design alternatives could mean performing internet searches for com-
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mercial solutions, creating custom in-house designs or a combination. Regard-

less, it is important to recognize each design solution that meets the constraints

and requirements for the mission before performing the trade study. On the

other hand, it is equally important not to include alternatives that are out of

the scope of the mission, do not satisfy the requirements or would not have

worked.

Evaluate Alternatives . The technical evaluation is where most of

the time is spent in a trade study. Often information is not available and tests

and analysis must be performed, or direct contact with a manufacturer is the

only way to glean the necessary information to make an objective comparison.

Besides collecting data, the technical evaluation also includes an internal sen-

sitivity analysis, which is different from the system sensitivity analysis. An

internal sensitivity analysis provides an engineer with the relationships be-

tween the design alternatives and the evaluation criteria, thereby generalizing

the trade study and simplifying future work if the study must be revisited.

Decision . Making an objective decision can often feel very subjective.

Conventual wisdom and group-think can often drive trade study results even

when the data suggests otherwise. Fortunately, there are decision making tools

used by engineers to facilitate objective decision making such as Pro/Con lists,

Analytical Hierarchy Process (AHP) and Pugh Matrices. Decision making can

and should be done by student engineers on specific component level trade

studies. Not every decision needs to make its way to a student manager or

systems engineer. Nevertheless, the analysis should support the decision and

the decision should be documented within a requirement or design, with the
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analysis as support or rationale. Documenting the result(s) is crucial in a

student-based design laboratory as the turnover rate is large and new students

must understand past design decisions in order to maintain progress.

System Sensitivity Analysis . After one option has been selected

during an iteration, the consequences of the choice must be evaluated against

the entire system design. For student projects, the best sensitivity analysis

to perform is to engage the team members with some form of the question,

“How will this design decision, or trade study result affect your design?”. In

many cases there may be no effect, but assessing the implications on other

aspects of the system design will provide new information to include in the

next iteration of the trade study. Even if the new information is garnered

through a student-to-student dialogue. More information is provide in Section

8.3.

Iterate . The last step, and most important, is to iterate on the trade

study. Does the result make sense? How does the design decision affect the

entire system design? Do you have new information that may affect the trade

study result? The next iteration may not occur immediately. Often the trade

study is revisited periodically in the life cycle. On the other hand, it is impor-

tant not to slip into “analysis paralysis”. Consider the project schedule before

iterating on the trade study again.

8.2 Concurrent Design Effort

For a student-based design laboratory, trade studies are a unique sys-

tems engineering process that heavily involves the design development. For
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a small organization with tight time constraints, design development and the

evaluation of those alternative designs must become a single process for a

small number of students. That is, students must be able to refine a couple of

possible designs to a point at which the trade study can make the necessary

comparison and decision.

8.2.1 Initial Downsize of Alternative Designs

Within a single trade study, an array of very different design solutions

may be present, but for a proper evaluation each design must have a sufficient

level of detail. Depending on the trade study, developing even more than three

detailed designs at the component or subsystem level will drain resources;

thus, downsizing from the large initial pool of concepts will enable a team to

investigate a few designs, compare and ultimately select one.

To determine the subset of designs to refine, consider using qualitative

comparison tools such as a Pro/Con list, or a basic quantitative tool such as

AHP. While these are basic tools, they can be indispensable in an initial design

down-select.

8.2.2 Parallel Design Development

Once an initial analysis indicates a few viable design options, the next

step is to explore each alternative and quantify the performance towards meet-

ing the mission objectives. The intent is to refine each design option enough to

determine first, if it is still an option that meets mission requirements, and sec-

ond, how well each alternative quantifiably meets mission requirements. Using

the quantifiable data for the evaluation criteria, instead of the qualitative data
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for the initial down-select, enables a decision to be made.

8.2.3 Decision Point

Designs could always be better and analysis could always be more ac-

curate, but be aware of schedule constraints. It is very important to identify

deadlines in which trade studies must have a decision, simply because the rest

of the system design is depending on the result. Once the decision is made,

more time can be spent on improving the chosen design alternative as part of

the entire system. Returning to a trade study is always possible if the decision

has unforeseen ramifications, but often other aspects of the design depend on

the result. Solicit input from student leaders or faculty, but fear of making a

decision should be avoided.

8.3 System Sensitivity Analysis

After all the work leading to a design choice, a sensitivity analysis could

reverse the decision. Yet, sensitivity analyses are critical to ensure the overall

design will function as a single system. A system sensitivity analysis should

be performed at the subsystem level and focused on the implication of one

subsystem design to the rest of the subsystems. The analysis should focus on

interfaces and resources shared between the subsystems. Resource manage-

ment is covered in more detail in Chapter 9. However, the time to perform a

detailed sensitivity analysis in a student-based design environment is often un-

available. Student engineers working in subsystem teams often optimize a sub-

system design without regard to other subsystems. Therefore, student-based

design laboratories must perform a different, shortened sensitivity analysis to
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prevent isolated designing.

Given trade study results or a chosen design, a basic sensitivity anal-

ysis against the other aspects of the system will determine how the decision

affects the overall design. To perform the analysis, first qualitatively brief

team members within each separate division of the project. Technical reviews,

as discussed in Chapter 12, also provide a means to communicate trade study

results. Depending on the trade study and the system being designed, the

following questions should be asked;

1. Will the result(s)/design(s) change any system or subsystem require-

ments, fail to meet constraints or alter any assumptions previously made?

2. Will the result(s) define or change an interface between subsystems?

3. Will the result(s) affect the system resource margins (ie. mass, volume,

power, etc.)?

4. How will the result(s) affect the subsystems?

5. Will the result(s) affect the cost of the subsystem?

6. Will the result(s) drive other subsystem designs?

7. Will the result(s) cause significant re-work in the subsystem design?

The initial qualitative analysis could be performed during a team meet-

ing or one-on-one communications. This quick and simple communication will

simultaneously inform the team of design decisions and contact those impacted

by the decisions. Once impacted aspects of the system have been identified, a

quantitative analysis can be performed, if needed. Then, once data has been

collected on the impact, the result or design decision needs to be reevaluated

taking into account the new information.
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8.4 Example: Analysis of GNC Actuator Performance

Based on the Paradox satellite system functional requirements derived

from the mission objectives, there is a need for both translational and rota-

tional actuation. Actuator performance is a function of both the environment

and the guidance software determining when and how to move the vehicle.

The example trade study will go through a series of technical analyses

showing the derivation of the performance requirements imposed on the design

of actuators and the design of the rendezvous guidance algorithm.

8.4.1 Translational Actuation

To perform the mission outlined by mission goals and objectives, re-

gardless of the choice of the actuator, an analysis must be performed to under-

stand how well the vehicle must make a series of translational maneuvers. The

question to be answered is, “What is the maximum translational capability

(∆V ) the system shall employ to successfully satisfy the mission?” Answering

the question will directly derive a performance requirement that the design of

the propulsion subsystem must satisfy to provide the necessary translational

actuation.

8.4.1.1 Problem Definition

Objective. Given the mission objective of rendezvous, a system functional

requirement dictates, “ SAT-10: The Paradox satellite system shall per-

form translational maneuvers.” The next step is to determine qualita-

tively to what extent the vehicle will perform translational maneuvers
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to accomplish a rendezvous.

Assumptions and Constraints.

1. The three-unit CubeSat standard.[10]

2. Earth orbit altitudes [300 - 800 km].

3. Total ∆V < 20 m/s.[8]

4. Relevant total rendezvous time 0.5 < trendez < 24 hours.

5. Unknown launch vehicle.

6. Unknown launch vehicle separation conditions.

Evaluation Criteria. The desire is to minimize the total ∆V required to

rendezvous given the assumptions and constraints.

Alternative Designs. For this trade study there are less obvious alterna-

tive designs, which is common for performance requirement definition.

Instead, the design of the guidance algorithm is synonymous with speci-

fying the performance requirement, and thus, is to be developed through

the trade. The guidance algorithm will incorporate elements of analyti-

cal optimization and an iterative Lambert targeter to minimize the total

∆V required to rendezvous.

Analysis. Instead of comparing designs, the algorithm is based on design

heritage from the past project, Texas 2-STEP. However, initial testing

indicated that further design work was needed. Thus, the analysis con-

sisted of developing a robust algorithm that could handle the unknowns

posed in the assumptions and constraints for Paradox. The full analysis

is detailed in the following sections.
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8.4.1.2 Guidance for Small Satellite Rendezvous Applications

Silva[3] developed an autonomous guidance algorithm for nanosatellite

rendezvous applications between two satellites. The algorithm incorporates a

quick and robust analytical Clohessy-Wilshire (CW) optimizer to determine

the drift and transfer times to optimize the two impulse rendezvous. Fig. 8.1

details the relative spacecraft dynamics of the rendezvous problem and the

algorithm is described below.
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Figure 8.1: Description of drift and return trajectories in the relative reference
frame.[3]

The CW optimizer computes the first impulse, ∆ρ̇1 and second impulse,

∆ρ̇2 based on a given drift time, t1 and transfer time, t2, using

[∆ρ̇1

∆ρ̇2
] = [A(t2)Φ11(t1) −Φ21(t1) A(t2)Φ12(t1) −Φ22(t1)

−B(t2)Φ11(t1) −B(t2)Φ12(t1) ] [ρ0

ρ̇0
] (8.1)
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where

κ = 3nt sin(nt) + 8 cos(nt) − 8,

ρ0 and ρ̇0 are the initial relative position and velocity of the chaser vehicle,

and

A(t) = 1

κ

⎡⎢⎢⎢⎢⎢⎣

n sin(nt) 0 −2n(7 cos(nt) + 3nt sin(nt) − 7)
0 − nκ

tan(nt) 0

2n(cos(nt) − 1) 0 n(4 sin(nt) − 3nt cos(nt))

⎤⎥⎥⎥⎥⎥⎦

B(t) = 1

κ

⎡⎢⎢⎢⎢⎢⎣

n sin(nt) 0 −2n(cos(nt) − 1)
0 − nκ

sin(nt) 0

−2n(cos(nt) − 1) 0 n(4 sin(nt) − 3nt)

⎤⎥⎥⎥⎥⎥⎦
.

See Appendix A for the definition of the relative reference frame. Then,

through a grid search, the algorithm selects the drift, t1, and transfer times,

t2, that minimize the ∆VCW = ∣∆ρ̇1∣ + ∣∆ρ̇2∣.

Given an optimal drift and transfer time, an iterative Lambert tar-

geter more accurately determines the direction and magnitude of the ∆VL

in the presence of environmental perturbations. Fig. 8.2 describes the orbital

geometry.

A basis for on-orbit guidance, given an initial position and a desired

final position within a specified time period, is posed as Lambert’s Problem.

Carl Friedrich Gauss first solved Lambert’s problem and since the solution has

seen many improvements. Richard Battin more recently presents a technique

which will be the basis for the guidance law. For a full derivation and further

instruction see Battin [2, 3] Gauss’ solution begins with Kepler’s basic time-

transfer equation,
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1

2

√
µ

a3
(tf − t0) = E − e sinE (8.2)

Gauss’ solution manipulated Kepler’s time-transfer equation into a cu-

bic equation in terms of the variable y and Battin’s[2] solution augmented

Gauss’ form of the cubic equation to remove the singularity at half orbit pe-

riods for the transfer orbit.

y3 − y2 − h1y
2 − h2 = 0, (8.3)

The algorithm is described by beginning with an initial guess for x, as

x0 = `.

The free parameter used to flatten Gauss’ cubic form of Kepler’s trans-

fer time equation is defined as,

h1 = (` + x)2(1 + 3x + ξ)
(1 + 2x + `)[4x + ξ(3 + x)] , (8.4)

h2 = m(x − ` + ξ)
(1 + 2x + `)[4x + ξ(3 + x)] . (8.5)
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Figure 8.2: Lambert orbital geometry.

To simplify future equations, define the following variables,

B = 27h2

4(1 + h1)3
, (8.6)

u = − B

2(√B + 1 + 1) . (8.7)

Solve Eqn.8.3 for y, yields

y = (1 + h1

3
)(2 +

√
B + 1

1 − 2uK2(u)) , (8.8)

and using the definition of y2 to solve for x,

x =
¿
ÁÁÀ(1 − `

2
)

2

+ m

y2
− 1 + `

2
. (8.9)
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The algorithm is iterated until the change in x is below a desired tol-

erance. The desire velocity at the initial and final positions are calculated,

via

ṙ+1 =
1

λ(1 + λ)

¿
ÁÁÀ µ(1 + x)

2s3(` + x) [(r2 − r1) + s(1 + λ)2(` + x)
1 + x

r1

r1

] ,

ṙ+2 =
1

λ(1 + λ)

¿
ÁÁÀ µ(1 + x)

2s3(` + x) [(r2 − r1) − s(1 + λ)2(` + x)
1 + x

r2

r2

] ,

and the two individual impulses are calculated as,

∆ṙ1 = ṙ+1 − ṙ−1 ,

∆ṙ2 = ṙ+2 − ṙ−2 .

Thus, the total Lambert ∆VL, given a transfer time, initial and final

position is

∆VL = ∣∆ṙ1∣ + ∣∆ṙ2∣. (8.10)

The full derivation and variable definitions are found in Silva[3] and

Battin[2]. Upon initial inspection, the algorithm proved to be exactly what

was needed for the Paradox guidance law, and could be used for the trade study

to accurately determine the expected ∆V capability needed for the mission.

However, simulations realized the limitations of the guidance algorithm which

would subsequently limit the mission. Note the difference between the separate

∆V calculations ∆VL −∆VCW , depicted in Fig. 8.3
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Figure 8.3: Difference between ∆VL and ∆VCW with respect to drift and
transfer times.

The primary limitation is the ∆VL for transfer times greater than one

period of the reference or target orbit. The calculated ∆VL is much greater

than the analytical ∆VCW . In fact, the actual ∆VL for transfer times longer

than a single orbit period are beyond the technological capability of picosatel-

lites.[8]

8.4.1.3 Multi-Revolution Lambert Targeting

For transfer times greater than one orbit period, the difference between

the analytical ∆VCW and the Lambert ∆VL diverge as seen in Fig. 8.3. Lam-

bert solutions with a transfer time greater than one period do not take into

account multiple revolutions transfers. Thus, the ∆VL increases past the capa-
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bilities of the mission. Therefore, the guidance algorithm suggested by Silva[3]

must be modified to include multiple revolution transfers, subsequently lower-

ing the required ∆VL and increase flexibility during mission operations. Loech-

ler[4] developed a Lambert targeting algorithm to include multiple revolution

transfers. Equation 8.2 is augmented to include multiple revolution transfers,

1

2

√
µ

a3
(tf − t0) = Nπ +E − e sinE

For each multiple revolution, N > 0, two solution branches exist, an

upper branch and a lower branch. For cases where θ ≤ 180○, the upper branch

corresponds to large eccentricity transfer orbits, and the lower branch corre-

sponds to small eccentricity transfer orbits. For cases where θ ≥ 180○ as defined

in Fig. 8.2, the upper branch corresponds to small eccentricity transfer orbits,

and the lower branch corresponds to large eccentricity transfer orbits.[5] Thus,

two separate algorithms are required to determine the small eccentricity trans-

fer orbit because the large eccentricity transfer orbit is not feasible for small

satellites.

For the upper branch, the algorithm is initiated with a guess for x,

x0 = 1 + 4`.

The rest of the algorithm (Eqns. 8.6 to 8.10) is implemented just as the reg-

ular Lambert targeting algorithm in Section 8.4.1.2 except the free parameter

(Eqn. 8.4) used to flatten Gauss’ cubic form of Kepler’s transfer time equation.
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Equation 8.4 now becomes,

h1 = ` + x

4x2(1 + 2x + `) (3(1 + x2)N π
2 + tan−1

√
x√

x
− (3 + 5x)) ,

h2 = m

4x2(1 + 2x + `)
⎡⎢⎢⎢⎢⎣
[x2 − (1 + `)x − 3`] (N π

2 + tan−1
√

x)√
x

+ (3` + x)
⎤⎥⎥⎥⎥⎦
.

However, the lower branch algorithm is substantially different. The

initial guess x0 ≠ 0, but must be sufficiently small. Thus, a value of x0 = 1×10−4

is shown to work well. The equation for the free parameter is also modified as

h1 = (` + x)(1 + 2x + `)
2(` − x2) ,

h2 = m
√

x

2(` − x2)
⎡⎢⎢⎢⎢⎣
(` − x2) (N π

2 + tan−1
√

x)√
x

− (` + x)
⎤⎥⎥⎥⎥⎦
.

The variable definition for B changes but u remains the same as in Eqn. 8.6,

B = 27h2

4[√x(1 + h1)]3
,

u = − B

2(√B + 1 + 1) .

The solution to the cubic equation is only slightly modified from Eqn. 8.8 and

because of the change in the definition of y the solution to x is different as

well.

y = (
√

x(1 + h1)
3

)(2 +
√

B + 1

1 − 2uK2(u)) ,

x = 1

2

⎡⎢⎢⎢⎢⎢⎣
(m

y2
− (1 + `)) −

¿
ÁÁÀ(m

y2
− (1 + `))

2

− 4`

⎤⎥⎥⎥⎥⎥⎦
.

Again, the algorithm is iterated until the change in the solution to x is below

a desired tolerance. The desired initial and final velocities can be calculated
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Figure 8.4: Difference between the ∆VL and ∆VCW with respect to drift and
transfer times.

from Eqn. 8.10, and then the total ∆VL from Eqn. 8.10. Replacing the regular

Lambert targeter in the guidance algorithm with the multiple-revolution Lam-

bert targeting algorithm significantly improved the calculated ∆VL for transfer

times greater than one period. Using the difference scheme ∆VL −∆VCW , the

two separate ∆V calculations are compared in Fig. 8.4. Notice that there is

still a significant difference at integer values of the period of the reference orbit.

In this case, the multiple-revolution Lambert algorithm still has the singularity

seen in the regular Lambert algorithm derived by Battin.[2] Battin’s method

removes the singularity at θ = 180○, which exists in Gauss’ method, but one

still remains at θ = 2πN or, for the problem considered in satellite rendezvous,
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every orbit period.

8.4.1.4 Separation Conditions

A major design driver is the assumption that the launch vehicle and the

separation profile are currently unknown. Thus, the vehicle must have the ∆V

capability to handle any separation condition. Fig. 8.5 defines the separation

dynamics between two spacecraft. Note that the second spacecraft has been

omitted for clarity.

Figure 8.5: Separation dynamics between two spacecraft.

Silva[3] investigated the ∆V cost with respect to both the in-plane and

out-of-plane separation angle. Fig. 8.6 showcases the relationship.
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Figure 8.6: Optimal ∆V with respect to separation conditions between two
objects.[3]

The analysis indicates that the highest ∆V and subsequently the worst

separation case is at the in-plane angle of 0○ and an out-of-plane angle of 0○

or 180○ for a fixed maximum total rendezvous time.

8.4.1.5 Result

The trade study results are two-pronged. First, the results directly de-

rive a performance requirement for the parent functional requirement, “SAT-

10: The vehicle shall perform translational maneuvers.” Second, the trade

study evaluated and refined the design of the guidance algorithm to provide

optimal rendezvous trajectory regardless of separation conditions or total ren-

dezvous time less than 24.0 hours.

Decision. The performance requirement is ultimately a conservative bound

on the problem posed by the mission. Given the worst case separation

conditions of α = 0○ and β = 0○ or 180○ and total rendezvous time is
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less than 24.0 hours, then there shall be enough propulsive capability to

perform the rendezvous. The technical analysis gives a ∆V of 9.7 m/s.

Adding approximately a 50% margin for mission assurance defines the

performance requirement,

PRP-1.1: The propulsion subsystem shall have a total ∆V

capacity of 15.0 m/s.

The performance requirement is well within the feasibility of current

technology.[8]

System Sensitivity Analysis. The result must be assessed against the cur-

rent state of the design by performing a sensitivity analysis at each sub-

system. Table 8.1 shows the impact of the results on each satellite sub-

system.

Table 8.1: Satellite system sensitivity analysis of ∆V trade study result.

Subsystem Effect

CAM No effect.
CDH No effect.
COM No effect.
EPS No effect.
GNC The trade study essentially updated the guidance algo-

rithm design.
INT No effect.
PRP The result effectively imposed a constraint on the

propulsion subsystem design. Further propulsion design
work will assess the feasibility of meeting the require-
ment.

Iterate. At the moment, the sensitivity results do not indicate the need for
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an immediate iteration. The trade study directly affects the propulsion

subsystem, and designers now have a lower bound to design. As the

propulsion team converges on a feasible design, the ∆V trade study will

need to be revisited if testing show that the requirement may not be

satisfied.

8.4.2 Rotational Actuation

To perform the mission outlined by mission goals and objective, regard-

less of the choice of the actuator, an analysis must be performed to understand

how well the vehicle must make a series of rotational maneuvers. The questions

to be answered is, “What is the minimum rotational capability (rad/s) neces-

sary to successfully satisfy the mission?” Answering the question will directly

derive a performance requirement that the design of the attitude actuation

subsystem must satisfy to provide the necessary rotational actuation.

8.4.2.1 Problem Definition

Objective. Given the mission objectives of rendezvous and to evaluate the

actuator suite, system functional requirements dictate, “SAT-11: The

satellite shall perform rotational maneuvers.” The next step is to de-

termine quantitatively what extent the vehicle will perform rotational

maneuvers to accomplish a rendezvous and reject environmental distur-

bance torques.

Assumptions and Constraints.

1. The three-unit CubeSat standard.[10]
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2. The center-of-mass is a distance less than 2 cm from the geometrical

center.[10]

3. Earth orbit altitude [300 - 800 km].

4. Relevant total rendezvous time 0.5 < trendez < 24 hours.

Evaluation Criteria. Determine the minimum rate (degrees/s) at which the

satellite must rotate to accomplish a rendezvous. Determine the min-

imum torque (N-m) required to rendezvous or reject external torques

given the assumptions and constraints.

Alternative Designs. For the trade study, again, there are less obvious al-

ternative designs. Instead, the trade study will determine performance

requirements.

Analysis The full analysis is detailed in the following sections.

8.4.2.2 Necessary Rotation Actuation for Rendezvous Sequence

The current design for the guidance algorithm implements two major

impulsive maneuvers and a series of four intermediate course corrections to

rendezvous. Thus, the satellite must have the capability to rotate to the de-

sired attitude states before performing each impulsive maneuver. With a total

rendezvous time, 0.5 < trendez < 24.0 hours, the satellite may have to perform a

rendezvous within 30 minutes. Thus, the satellite must have the capability to

rotate the satellite to the desired impulsive vectors for each maneuver. If the

last maneuver concludes the rendezvous, then the satellite has five minutes to

rotate to the desired attitude in between each maneuver. Assuming a worst

104



case scenario where the desired attitude is 180○ from the current attitude, then

the vehicle must be able to rotate at 0.6○/s.

8.4.2.3 Environment Disturbance Torques

In addition to the rotational maneuvers between propulsive burns, the

satellite must be able to hold a desired attitude before and during the impulsive

maneuver. The three major environmental torques expected in low earth orbit

are atmospheric drag, gravity gradient and residual magnetic dipole. The

atmospheric drag force model is

fd = −1

2
CdApρvrelvrel

where Cd is the satellites coefficient of drag, Ap is the profile area of the satellite

with respect to the relative velocity vector, vrel, the atmospheric density is ρ

and m is the mass of the satellite. The relative velocity vector is defined as,

vrel = vsat −ωEarth × rsat

The atmospheric torque on the satellite is the given by,

Tatmos = rp × fd

where rp is the center of pressure with respect to the center of mass of the

satellite and fd is the atmospheric drag force acting through the center of

pressure. The analysis chooses the satellite at a 300 km altitude orbit, since

the relative velocity and density will bound the actual conditions expected

from the assumptions. The maximum atmospheric drag torque is 1× 10−17 N-

m and essentially zero. However, if the center of mass is not at the geometric
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center of the satellite, the atmospheric drag torque linearly increases. Thus, if

the center of mass is at the maximum for picosatellite standards, ±2.0cm, then

the maximum expected torque is 2.0×10−5 N-m. Figures 8.7 and 8.8 show the

sensitivity of the atmospheric drag torque with respect to the satellite attitude

and altitude, respectively.

Figure 8.7 depicts how the atmospheric torque changes with the atti-

tude of the spacecraft. Since the drag force is a function of the projected area

in the direction of the relative velocity vector, the drag torque is maximum

when the attitude of the vehicle has a maximum projected area. As the vehicle

is a rectangular prism, the maximum projected area is at an approximately

attitude of out-of-plane angle of 45○ and a pitch angle of 12○.
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Figure 8.7: The atmospheric drag torque with respect to the attitude of the
satellite.
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Subsequence occurrences of the same projected area are at 135○ out-of-

plane and 168○ as the vehicle is symmetric. The minimum atmospheric drag

torque is at an attitude of 90○ and 90○, which is when the smallest face of the

prism is in the direction of the velocity vector. Figure 8.7 shows the sensitivity

of the atmospheric torque over the assumed orbit altitude range. Thus, this

internal sensitivity analysis on the trade study assumptions prevents rework if

the trade study must be revisited once the orbit altitude is determined.
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Figure 8.8: The atmospheric drag torque with respect to altitude given the
worst case attitude.

The residual magnetic dipole torque is given by,

Tmagnetic = Mr ×BEarth

where Mr is the residual magnetic dipole of the satellite, which is assumed to
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be constant, and BEarth is the magnetic field of the Earth. The typical residual

magnetic dipole for a small-sized, uncompensated vehicle is 0.1 A-m2.[9], in

which case the worst case residual magnetic torque would be 4.0 × 10−6 N-m.

Figure 8.9 shows the sensitivity of the torque to the expected altitude range.
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Figure 8.9: The residual magnetic dipole torque with respect to altitude given
the worst case attitude.

Last, the effect of the gravity gradient torque, which can be represented

as,

Tgg = 3n2r̂×e Ir̂e

where n is the satellite mean motion, re is the unit vector of the satellite’s

center to Earth’s center expressed in the body frame, and I is the inertia

matrix of the satellite.[11] Figure 8.10 and 8.11 show the sensitivity of the
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gravity gradient torque with respect to the satellite’s attitude and altitude,

respectively. The expected worst case gravity gradient torque is 4.5 × 10−8

N-m.

Figure 8.10: The gravity gradient torque with respect to the attitude of the
satellite.

109



300 400 500 600 700 800

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5
x 10

−8

Altitude (km)

R
es

id
ua

l M
ag

ne
tic

 T
or

qu
e 

(N
−

m
)

Figure 8.11: The gravity gradient torque with respect to altitude given the
worst case attitude.

8.4.2.4 Result

The trade study results directly derive a two performance requirements

to satisfy the parent functional requirement, “SAT-11: The vehicle shall per-

form rotational maneuvers.”

Decision.

GNC-1.1: The GNC subsystem shall perform rotational ma-

neuvers at a minimum rate of 0.011 rad/s (0.6 deg/s).

GNC-1.2: The GNC subsystem shall reject environmental dis-

turbance torques of at least 2 × 10−5 N-m.
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The performance requirements are ultimately a conservative bound on

the problem posed by the mission. Given the worst case instantaneous

torque of 2 × 10−5 N-m, which is the sum of the three environmental

torques investigated, then the attitude actuator design shall the capa-

bility to perform the rendezvous at the minimum rate and overcome

the disturbance torques required. However, the result must be assessed

against the current state of the design by performing a sensitivity anal-

ysis as in Table 8.2.

System Sensitivity Analysis.

Table 8.2: System sensitivity analysis on the rotational actuation trade study
result.

Subsystem Effect

CAM No effect.
CDH No effect.
COM No effect.
EPS No effect.
GNC Selection of the attitude actuators must be able to

overcome environmental torques and rotate the satellite
faster than 0.6 deg/s. In addition, momentum storage
and rejection capabilities need to be evaluated.

INT No effect.
PRP No effect, unless used as a momentum rejection device.

Iterate. At the moment, the sensitivity results do not indicate the need for an

immediate iteration. The trade study directly affects the GNC subsys-

tem, and designers now have performance metrics to select the attitude

actuators. As the GNC team converges on a design, the trade study will

need to be revisited if the requirement is not successfully verified.
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8.5 Example: Attitude Actuator Selection

Objective. Select or design attitude actuator hardware to satisfy the derived

performance requirements,

GNC-1.1: Perform rotational maneuvers at a minimum rate

of 0.011 rad/s (0.6 deg/s).

GNC-1.2: Reject environmental disturbance torques of at least

2 × 10−5 N-m.

GNC-1.3: Maintain an attitude with a maximum error of 0.087

rad (5.0 deg).

Although not discussed explicitly in this thesis, a separate analysis de-

rived the performance requirement for GNC-1.3 as the level of pointing

accuracy required in the rotational maneuvers.

Assumptions and Constraints. The major constraints for selecting atti-

tude actuators is in the extended objective for a three-unit CubeSat

standard (SAT-18).[10] Any other assumptions and constraints on the

actuator hardware are built into the performance requirements, such

that if the performance requirements are satisfied the assumptions and

constraints are as well.

Evaluation Criteria. Hardware specifications are defined either as individ-

ual hardware components or integrated as a complete attitude actuator

hardware solution. The following criteria are ranked in order of impor-

tance:
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1. Volume. The volume will be assessed based on the integrated design

of the actuator hardware solution within the CubeSat form factor.

2. Power. Both nominal power consumption at the component level

will be used as criteria.

3. Performance. The ability of the system to store momentum caused

by disturbance torques, or reject disturbance torques real time is

necessary. The primary metrics will be the nominal momentum

storage, the solution’s ability to unload momentum, and the nomi-

nal torque.

4. Flight Heritage. Whether hardware components have been flown

successfully in space before.

5. Mass. The mass of the individual hardware components.

6. Cost. The total cost of the attitude actuator hardware solution.

Alternative Designs. For this trade study there are a variety of designs to

consider. First, the general architecture must be decided. There cur-

rently are three different technology architectures to actively control a

satellite’s attitude, which can either be considered as independent solu-

tions or as combinations.

1. Reaction Wheels. Momentum exchange devices, like reaction or

momentum wheels, provide the level of accuracy required (GNC-

1.3), but are not a viable independent solution due to a momentum

saturation problem.

2. Propulsion. Propulsion systems do not have the momentum satu-

ration problems as momentum exchange devices. However, active
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attitude control will require large amounts of propellant and thus

a larger volume than allowable within the CubeSat form factor. In

addition, the accuracy of a CubeSat-sized propulsion system is not

well known.

3. Magnetorquer. Similar to the propulsion solution, magnetorquer

does not have a saturation problem. However, magnetorquers do

not need an expendable (like propellant) to perform attitude con-

trol. However, due to the lack of knowledge of the Earth’s mag-

netic field, the level of accuracy (GNC-1.3) will not make torque

coils/rods a viable independent solution.

4. Reaction Wheels and Propulsion. Momentum exchange devices can

provide the level of accuracy needed, while a propulsion system can

provide relief to the saturation problem. Nevertheless, the propul-

sion system will require a significant volume and mass to be used

to unload momentum from the reaction wheels.

5. Reaction Wheels and Magnetorquer. The coupled system provides

the level of accuracy needed with the reaction wheels while alleviat-

ing the momentum saturation problem without adding significant

mass and volume to the overall satellite design. Therefore, given

the desired performance and constraints, a reaction wheel and mag-

netorquer combination should satisfy all of the requirements and

constraints better than any other option.

Through this initial pro/con analysis based on the innate capa-

bilities of each design architecture, the alternatives were down-selected
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to a single architecture without spending time on detailed designs.

The reaction wheels and magnetorquer architecture design must

be analyzed in detail. Due to the lack of in-house expertise and the level

of complexity of developing reaction/momentum wheels, commercial-off-

the-shelf options will only be considered. However, with an in-depth

look at the commercial magnetorquer hardware, the students determined

that a similar product could be reproduced to meet the requirements of

the mission for a significantly lower cost. The current student design

idea for the magnetorquer is similar to the Clyde Space 3U Solar Panel

with Magnetorquer Printed Circuit Board. Nevertheless, the following

commercial hardware solutions currently exist for the reaction wheels

and meet requirements,

1. Sinclair Interplanetary: 30 mN-m-s Reaction Wheel (SI-30)

2. Sinclair Interplanetary: 10 mN-m-s Reaction Wheel (SI-10)

3. Astro-und Feinwerktechnik: Reaction Wheel Type A (AF-A)

4. Astro-und Feinwerktechnik: Reaction Wheel Type B (AF-B)

5. IntelliTech Microsystems, Inc.: IMI-100 Attitude Control and De-

termination System. (IMI-100)

The IMI-100 system is a stand-alone, off-the-shelf integrated re-

action wheel and magnetorquer solution with accompanied sensors. The

other commercial reaction wheels will have to be integrated with the stu-

dent magnetorquer design to form a comparable solution to the IMI-100.

Analysis. First, review specifications on each product in Table 8.3 and 8.4
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Table 8.3: Commercial Attitude Control Actuators Non-Performance Specifi-
cations.

Hardware Dimensions (mm) Power (W) Mass (g) Cost ($)
SI-30 50 × 50 × 40 1.5 185 ∼ 25,000
SI-10 50 × 50 × 30 0.7 120 ∼ 20,000
AF-A ∅ 21 × 12 0.72 20 ∼ 18,000
AF-B ∅ 21 × 12 0.72 12 ∼ 18,000

IMI-100 102 × 102 × 79 4.32 907 ∼ 70,000

Table 8.4: Reaction Wheel Performance Specifications.

Hardware Nominal
Torque
(mN-m)

Angular
Momentum
(mN-m-s)

Flight Her-
itage

SI-30 2.0 30 Yes
SI-10 1.0 10 No
AF-A 0.023 1.1 Yes
AF-B 0.004 0.2 No

IMI-100 0.635 1.1 No

Based on these specifications, the Astro-und Feinwerktechnik re-

action wheels are smaller and have significantly less mass for a similar

power consumption level to the Sinclair wheels. In addition, both have

flight heritage. The SI-30 are flight proven onboard the CanX-2 satel-

lite, which launched April 2008, and the AF-A/B are successfully flying

on BeeSat, launched in September 2009. However, the AF-A/B per-

formance is significantly less than either of the Sinclair Interplanetary

wheels.

Nevertheless, the key metric for the trade study is volume, or
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rather how much usable space is consumed by a hardware solution. Us-

able space can be defined as the amount volume for which a hardware

component can be fully integrated and assembled within the structure.

Each set of reaction wheels was modeled and designed to mount directly

to the structure with the intent to minimize the impact in volume while

ensuring machinability and ease in assembly. For example, Fig. 8.12

shows an integrated solution using the SI-30 wheels. Similar design so-

lutions were developed for each reaction wheel option and compared.

Figure 8.12: A custom configuration of three SI-30 mounted in a custom satel-
lite structure.

To properly compare volumes with the IMI-100, the Sinclair and

Astro-Fien reaction wheel solutions had to be modeled with the selected

attitude sensors and accompanied electronics boards. Table 8.5 show-

cases the volumetric comparison of the innovative integrated attitude
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actuator design solutions to compare with the IMI-100.

Table 8.5: Volumetric Comparison of Integrated Hardware Solutions

Hardware Volume (cm3)

SI-30 655
SI-10 507
AF-A 105
AF-B 105

IMI-100 813

Decision. First, the IMI-100 requires significantly more volume, even after

taking into account the integrated electronics and sensors, while provid-

ing a medium level of performance. In addition, the IMI solution does

not have flight heritage.

Between the two Sinclair Interplanetary wheels, there is enough

savings in volume, power and mass without sacrificing performance to

choose the SI-10 wheels over the SI-30 wheels. Similarly, the major

difference between the two Astro-und Feinwerktechnik reaction wheels is

in performance, thus the AF-A, with better performance, is the better

candidate.

The resulting trade is choosing between the SI-10 and the AF-A

wheels. A classic trade between performance and technical resources.

Preliminary analysis confirms that both wheels satisfy the performance

requirements, but the SI-10 wheels have a higher momentum saturation

limit than the AF-A. Therefore, in the presence of significant disturbing

torques on-orbit, a solution with the AF-A wheels will have to desaturate
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more frequently using the magnetorquers. In this case, the SI-10 reaction

wheels provide a more robust solution to environmental perturbations.

Nevertheless, the current baseline decision is the AF-A wheels

because of the significant savings in volume and mass.

System Sensitivity Analysis. The reaction wheel hardware selection must

be analyzed with respect to the other subsystems in the satellite. Further

design and analysis with respect to the full system may provide more

information to the trade study. Table 8.6 shows the effects of the result

on the other subsystems.

Table 8.6: System sensitivity analysis from the attitude actuator trade study.

Subsystem Effect

CAM No effect.
CDH No effect.
COM No effect.
EPS Must define power interface to selected hardware. Fur-

ther power budget analysis will need to confirm power
consumption level adequate.

GNC The trade study selected the optimal hardware compo-
nents to meet mission requirements based on relevant
data. Must define data interface to selected hardware.

INT Must define physical interfaces, both mounting the se-
lected hardware to the structure and the necessary
wiring harness.

PRP The propulsion subsystem does not have to provide ac-
tive attitude actuation or momentum desaturation.

Iterate. The comparison between the AF-A and SI-10 is difficult because of

the positive and negative attributes of each. Further analysis is needed
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to determine the sensitivity of desaturation frequency with respect to

the range of expected on-orbit disturbance torques. A questions that

remains is whether the desaturation frequency using the AF-A wheels

adversely affects on-orbit operations. The trade study will need to be

revisited once the analysis has been performed.
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Chapter 9

Resource Management

A program/project resource is a physical entity, such as mass, volume

and money, which is often limited or constrained. Technical resources, then,

pertain to the resources utilized by the technical design to achieve the mission,

such as mass and volume. Thus, money or a project’s financial budget and

schedule is not considered a technical resource and will not be covered here.

Nevertheless, for a system being designed with constrained technical resources,

those resources must be properly allocated to the subsystems, elements and

components that ultimately makeup the larger system for which the resource

constraint is imposed.

Resource allocation first begins with engineering estimates, or current

best estimates (CBE), for each respective sub-element of a system. From a

current best estimate and given the point within the project life cycle, a future

projection of the resource is made to take into account expected growth as the

design matures. This metric is considered the maximum expected estimate

of the resource and is the amount of the resource actually allocated to the

sub-element. That is, a subsystem design team provides the CBE based on

“everything that can be currently accounted for”, but the team requests an

allocation of the resource because the design is not expected to grow past this

“maximum expected value”.

121



Therefore, at any point in the project life cycle there is a maximum

possible, maximum expected and current best estimate for every technical re-

source. In general, the current best estimate of a resource changes as the

development team improves the design, but the allocated amount would not

change unless aspects of the system design requires a re-allocation of the re-

source.

The difference between the current best estimate and the allocated

resource value is considered contingency. Contingency is often held at the

subsystem level and the amount of contingency is based on the design maturity

and so subsequently the project life cycle. Many definitions of contingency

exist. The SDL uses the following definition[17],

Percent Contingency (%) = 100
Contingency

Current Best Estimate
.

On the other hand, margin is the difference between the design limit

(maximum possible value) and the allocated resource value. Margin is differ-

ent from contingency in that it accounts for unknown unknowns which occur

unexpectedly during the design development. One definition for percentage of

margin is[17],

Percent Margin (%) = 100
Margin

Allocated Resource Value
.

Normally margin is held at the system level, but it could be allocated

to subsystems if necessary. In a student-based design laboratory, margin is
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actively managed by the student leadership. Student-based design laborato-

ries have no guidelines to how the margin is rationed over the life cycle and

the decisions on rationing should be justified on technical analysis and data.

Figure 9.1 depicts the relationship between a resource design limit, margin

and contingency.

Figure 9.1: Margin and contingency with respect to any resource constraint.

NASA recommends levels of contingency and margin depending on the

phase of the life cycle. Table 9.1 provides guidelines for margin.
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Table 9.1: NASA Goddard Technical Resource Margin Recommendations
based on Project Life Cycle.[17]

Resource Pre-A A B C D

Mass ≥30% ≥25% ≥20% ≥15% ≥0%
Power (EOL) ≥30% ≥25% ≥15% ≥15% ≥10%
Propellant ≥30% ≥30% ≥20% ≥10% ≥10%
Pointing Accuracy 2× 2× 1.5× 1.5× 1.0×
Pointing Knowledge 2× 2× 1.5× 1.5× 1.0×
RF Link 6dB 6dB 6dB 4dB 4dB
Data Storage ≥40% ≥40% ≥40% ≥30% ≥30%
Data Throughput ≥30% ≥30% ≥20% ≥15% ≥15%

9.1 Example: Paradox Mass Budget

For all spacecraft, mass is an essential technical resource to monitor.

With launch costs directly tied to mass, heavy constraints are imposed based

on launch vehicles or separation devices. Other typical spacecraft resources

include volume, power, average and peak data rate, propellant, and data stor-

age. Mass can be considered a static resource that is demonstrated prior to

launch. Other resources such as power can be very dynamic and require much

more analysis and management to ensure a successful mission.

To demonstrate how the Paradox mission is managing mass as a techni-

cal resource, a series of tables show the allocation of mass through the Paradox

satellite system. The design limit for the 3U CubeSat standard is 4.0 kg.[10]

Table 9.2 demonstrates a component level mass budget where the current best

estimate for the electrical power subsystem is determined.
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Table 9.2: Electrical Power Subsystem Mass Budget

Component CBE (g)

Power Board 86
Solar Panels 200
Battery Board 80
Battery Daughter Board 124

Total 490

Contingency is then applied to the individual subsystem based on the

maturity of the design. The EPS subsystem is currently the most defined

subsystem primarily because the subsystem is based on heritage hardware from

PARADIGM; thus, a 5% contingency is applied. The propulsion subsystem

is the least known and given a 20% contingency. As each subsystem design

matures, the mass estimates are expected to erode into the original contingency

allocated, as seen in Table 9.3.

Table 9.3: Paradox Mass Budget

Subsystem CBE (g) Contingency (%) Allocated (g)

CAM 100 15 115
CDH 100 15 115
COM 200 15 230
EPS 490 5 515
GNC 950 10 1045
INT 500 10 550
PRP 500 20 600

Total (dry) 2840 3170

The allocated mass for the subsystems are then integrated into the

allocated dry mass for the satellite. Adding the mass of the propellant based
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on the required ∆V (PRP-1.1) and then the mass margin is calculated against

the design limit for the entire satellite seen in Table 9.4. A margin of 19% for

a system in Phase A of the project life cycle is considered low compared to

Table 9.1. However, considering that much of the hardware has been selected

and the masses are known, such as in the EPS, GNC and INT, the 19% is

considered a healthy margin to act as a buffer for future unknown unknowns.

Table 9.4: Paradox Mass Budget Overview

Mass (g)

Satellite Dry Mass 3170
Propellant 200
Loaded Mass 3370
Margin 630 19%
Design Limit 4000
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Chapter 10

Risk Management

Risk is a measure of the inability to achieve overall program objectives

within constraints and has two components: (1) the probability of failing to

achieve a particular outcome, and (2) the consequences of failing to achieve

that outcome.[1]. There are many types of risks associated with any program,

all which must be managed to some extent, even if all are not actively managed

within a student-based design laboratory. Two general types of risk include

technical and programmatic. Student-based design laboratories will naturally

handle programmatic risks, such as cost and schedule risk, but should actively

manage technical risk and personnel risk. Risk management involves analysis

to identify and characterized risks and then the mitigation of those risks.

10.1 Risk Analysis

Technical risk analysis can take many forms, ranging from qualita-

tive risk identification such as Failure Modes and Effects Analysis (FMEA),

to highly quantitative methods such as Probability Risk Assessment (PRA).

Risk analysis characterizes the risks in terms of two independent variables:

probability of occurrence and consequence of the occurrence. Based on the

probability and consequence, each risk to the project is then ranked to estab-

lish a plan of attack; focusing efforts and resources to mitigate risks to mission
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success.

Often undergraduate students do not have enough background in prob-

ability and statistics to warrant the use of PRA. The amount of time a stu-

dent would take to learn probability and statistics compared to the results

that would directly impact the design suggests the time would be well spent

on other tasks. Qualitative methods on the other hand provide a simple, yet

effective way to identify risks and directly suggest mitigation strategies to

implement into the design.

The premier qualitative method for risk analysis suggested for student-

based design laboratories is Failure Modes Effects Analysis (FMEA), primarily

because of the direct feedback from and into the design. FMEA is a method-

ology to identify failure modes, assess the risk for each mode, rank the causes

of failure and identify mitigation strategies.[1] There must be a level of design

prior to performing a FMEA. Nevertheless, FMEA is useful during the early

design phases in order to affect the design. Sometimes mitigation strategies

are solved in operational procedures, but most often it influences the system

design. The tailored process for FMEA for a student-based design laboratory

is outlined below[16],

1. Function/Item: First, identify a function or item, either software or

hardware, to assess failures that may impact mission success.

2. Failure Modes: Identify potential failure modes for the function or

item. A failure mode is defined as the manifestation of a failure. For

example, loss of communications.
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3. Effects: Identify the effects or consequences of the failure modes. A

consequence is defined as the result of the failure mode. Thus, an effect

from loss in communications may be mission failure.

4. Severity Rating: Rate the severity of each consequence. Qualitatively

rate the severity with respect to mission success on a 1 - 5 scale where:

1 - Minor, 2 - Marginal, 3 - Moderate, 4 - Critical, 5 - Catastrophic.

5. Causes: Identify possible causes of the failure mode. The cause of a

failure is defined as what induces the failure mode, such as the failure to

deploy an antenna causes a loss in communications.

6. Probability Rating: Rate the probability of occurrence for each cause.

Similarly, the probability rating is on a 1 - 5 scale, with the following

qualitative assessment: 1 - Extremely unlikely (<20%), 2 - Unlikely (20%

- 40%), 3 - Moderate (40% - 60%), 4 - Likely (60% - 80%), 5 - Very likely

(>80%)

7. Mitigation: Determine mitigation strategies to decrease either the prob-

ability of the cause, consequence of the effect or both.

8. Recommendation: State the recommended mitigation strategy and

assign responsibility.

Each function can have multiple failure modes and each failure mode

may have a series of effects and causes. Each valid combination of an effect

and cause represents a single risk. In addition, each cause or effect may be

mitigated by a number of different strategies. A FMEA can very quickly

become a “tree” of risks. Often, the FMEA process captures methods of

detection that are already built into the design and suggest fault detection as

129



mitigation solutions. However, fault detection methods are really out of the

scope for student-based design laboratories and not included in the tailored

FMEA.

Once the risks have been assessed through a FMEA, the analysis needs

to be easily communicated. Risk matrices are an easy way to manage and com-

municate risk. A standard risk matrix used by NASA is depicted in Fig. 10.1.

The risk matrix is not an assessment tool, but it does communicate individual

project risks and track the status of those risks.[1] The rating system described

in the FMEA directly maps to the risk matrix as a communication tool.

Figure 10.1: Risk matrix used to communicate project risks.[1]

Once the analysis is performed and the risks are populated in a risk

matrix, the matrix identifies a level priority between separate risks. Thus, the
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identified risks can be ranked and mitigated in a sequence that make sense to

ensure mission success. An example is shown in Section 10.2.

10.2 Example: Failure Mode Effects Analysis on the
Rendezvous Guidance Algorithm

The design of the rendezvous guidance algorithm is to the fidelity that

a FMEA can be carried out to recognize and mitigate potential failures in the

autonomous flight software on Paradox. Often a FMEA is represented as a

chart stepping through the sequence outlined in the previous section. Only

a single failure mode is considered in the example, but many possible causes

and effects are represented.

In this case, many aspects of the preliminary design of Paradox are

planned to be modified based on the FMEA in Table 10.1. The design of the

flight software will be supplemented with autonomous verification software

and with operational modes specifying impulsive maneuvers will not occur

in an eclipse. In addition, a change to the concept of operations will pro-

vide “human-in-the-loop” checks verifying the autonomy of the system while

ensuring mission success. To mitigate the severity of the risks would have

required adding fuel reserves and would not have been possible due to volume

constraints.

To communicate the assessment of the current risks from the FMEA,

each risk is represented on a risk matrix shown in Fig.10.2. Briefly, AA (E-

A and C-A) is the effect of partial loss of propellant caused by navigation

errors. AB is partial loss of propellant caused by the Lambert singularity in
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Table 10.1: FMEA on the Rendezvous Guidance Algorithm

Function/
Item

Rendezvous guidance algorithm

Failure
Mode

The flight software executes an incorrect impulsive maneu-
ver.

Effects E-A: Partial loss of propellant.
E-B : Complete loss of propellant.

Severity
Ratings

Effect E-A receives a rating of 3 because only a single
objective, MO-3, may not be satisfied, but the other ob-
jectives would have already been accomplished considering
the concept of operations (Section 5.5).
Effect E-B receives a rating of 4 because only a single
mission objective is not satisfied, but all other objectives
would have already been accomplished.

Causes C-A: Navigation errors produce incorrect estimates of the
current satellite state.
C-B : The optimal time of flight is within the singularity
of the Lambert targeter algorithm.

Probability
Ratings

Cause C-A receives a likelihood of 2 because high errors in
the state occur when the satellite is eclipsed by the Earth,
which occurs approximately 30% of an orbit.
Cause C-B receives a probability of 1 because simulations
produce incorrect calculation due to the Lambert singular-
ity <20%.

Mitigation M-A: Implementation of verification software to au-
tonomously check the validity of the impulsive maneuver
prior to execution. (Decreases the probability of Cause
C-A and C-B)
M-B : Modify the concept of operations to require all im-
pulsive maneuvers to occur within sunlight. (Decreases the
probability of Cause C-A)

Continued on the next page.
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Mitigation M-C : Modify the concept of operations to require ground
passes and checks from ground controllers before satellite
executes each impulsive maneuver. (Decreases the proba-
bility of the failure mode)

Recommen-
dation

All three mitigation strategies should be implemented pri-
marily because Paradox is in the early design phase and
changes are easy to implement now.

the rendezvous guidance algorithm. BA is complete loss of propellant caused

by navigation errors and BB is risk associated with complete propellant loss

caused by the Lambert singularity in the rendezvous guidance algorithm.

Figure 10.2: Risk matrix used to communicate risks from FMEA on rendezvous
guidance algorithm.
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The risk matrix allows for a ranking of the risk with respect to the order

in which each should be mitigated: first BA, second AA, third AB and fourth

BB. Thus, a focus on preventing complete or partial loss of propellant due to

navigation errors should be first priority due to the medium risk indicated in

Fig. 10.2.

10.3 Risk Mitigation

Mitigation of identified technical risks is the next logical step. Risk

mitigation is defined as the process of reducing the severity or probability of

a risk. Steps should be taken to eliminate or mitigate the risk if it is well

understood and the benefits realized. Not all risks must be mitigated. For

example, if the consequence of a risk is small and the mitigation is not justified

in cost or schedule, then the risk may have to be accepted. On the other hand,

if a risk is not well understood, that is, the probability and or the consequence

is highly uncertain, then the risk must be further investigated until a level

of certainty exists to properly mitigate.[1] Risk research includes testing, and

if testing demonstrates that the probability or severity of a failure mode are

negligible, then the risk is often considered mitigated through testing.

Mitigation for student-based design laboratories lies primarily in chang-

ing the design, either hardware or software, to affect the probability or conse-

quence for any given risk. Thus, as designs are crafted, risk analysis identifies

and characterizes the risk. Mitigation strategies then become integrated into

the design. However, another primary way for student-based design laboratory

to mitigate risk in a project is through heritage.
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10.3.1 Heritage

Project or mission heritage is characterized by the use of hardware or

software in a current design which has been utilized successfully in a previous

mission. For a student-based design laboratory, heritage can greatly mitigate

risk. To mitigate risk, a student-based design laboratory may choose to im-

plement an entire subsystem that they have demonstrated on a previous, but

similar, application. Conversely, a student-based design laboratory could im-

plement a series of components with heritage from other applications as a way

to mitigate the risk of the new integrated subsystem. In addition, heritage can

come from previous student projects, industry missions or commercial-of-the-

shelf components that have heritage on previous missions.

For example, flight heritage was used as a trade study evaluation crite-

ria between the various commercial reaction wheels (see Section 8.5). Flight

heritage is characterized as a product successfully flown in space, as opposed

to ground-qualified heritage, which is qualified for flight but either has not

flown yet or was not successful in the application. An example of ground-

qualified heritage is from FASTRAC and PARADIGM. Heritage from either

of the missions can only be considered ground-qualified because FASTRAC

has not flown yet and PARADIGM could not successfully demonstrate most

of its systems.

There are varying degrees to which heritage can be applied. If major

modifications are required, the hardware or software can probably only be

considered “experience”, not heritage because the application is completely

different. On the other hand, if only minor modifications are necessary, then
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partial heritage can be claimed. Last, if a system is identical to a previous

system it can be claimed as full heritage. Nevertheless, the following quote

provides a reality check when implementing heritage into a mission,

All use of heritage flight hardware shall be fully qualified and veri-

fied for use in its new application. This qualification shall take into

consideration necessary design modifications, changes to expected

environments, and differences in operational use.[17]

Thus, heritage can be used to mitigate risk on a project, not necessarily as a

means to reduce the amount of work on a project.

In the end, student-based design laboratories are, by their very nature,

high risk institutions due to the lack of experience and spirit of innovation.

Risk analysis and mitigation must be part of a student-based design laboratory,

but only insofar that the laboratory is not overwhelmed with activities not

directly supporting the design and development effort.
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Chapter 11

System Verification

Verification proves that a realized product for any system within a

larger system structure conforms to the requirements. The objective is to

generate evidence to confirm that the end products, from the lowest level of

the system structure to the highest, conform to the specified requirements.[1]

While verification is the process of identifying that the system was

produced correctly, validation determines if the system is the “right” system

satisfying stakeholder expectations. Verification maps directly back to the

requirements, whereas validation maps directly to customer expectations. Al-

though two distinct processes, for a student-based design laboratory validation

and verification should be performed simultaneously due to the considerable

overlap between the two. Specific validation processes are not covered in this

thesis.

There are four methods to verify a requirement: analysis, demonstra-

tion, inspection and test. A requirement can be verified by more than one

method. Analysis uses mathematical models and analytical techniques to pre-

dict the capability of a design meeting the requirements. Demonstration is

a qualitative assessment of a design meeting a specified requirement often

functional requirements and system characteristics. Inspection is a visual ex-

amination of the end product. Testing is a technical process of gathering
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data using special equipment and instrumentation to evaluated performance

requirements.

A student-based design laboratory is expected to utilize each method

based on the capabilities of the laboratory. Often within a student-based

design laboratory state-of-the-art test equipment is unavailable; thus, students

may rely on analysis, demonstration or less relevant test environments to prove

aspects of a mission.

11.1 Configuration Management

To verify a design or product, both the design and what the design

is being verified against must be documented. To document the design and

the design verification, the documentation must be configured and available

to the team. Thus, a key element to verification is configuration management

and the documentation of the design and systems processes. Configuration

management is a discipline applied over the product life cycle to provide visi-

bility and control for documentation of a product.[1] Essentially, configuration

management enables all stakeholders in the technical effort (ie students, fac-

ulty, external organizations), at any given time in the life of a product, to use

identical data for development activities and decision making.[1]

The importance of configuration management increases with the num-

ber of personnel directly requesting or accessing information on a project.

Thus, the larger a team, the more necessary is a well defined configuration

management strategy. This is the critical reason why industry requires a sig-

nificant configuration management plan for technical data.
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While configuration management may not be a responsibility for a ded-

icated student engineer, it is still needed. The primary importance for config-

uration management is that documentation and technical data must be easily

usable for all members of a product team. If configuration management is not

done properly, then work is often lost and rework is performed causing delays.

Additionally, if version control is not kept up-to-date, then hardware could be

fabricated incorrectly, assumptions could be made based on old data or the

system could be integrated incorrectly due to an old schematic. Therefore,

configuration management is key to verifying the most current product with

the most recent verification criteria.

Recently software products have been developed to assist in configura-

tion management. One that has been extremely helpful is Subversion, which is

available online. Subversion (SVN) has been shown to work exceptionally well

for student laboratories as a version control and documentation repository. A

documentation numbering structure must be developed and enforced by the

student leadership. Subversion is used for all current projects within the SDL

for flight software, simulations, hardware component specification documen-

tation, systems processes documentation and CAD designs. The open source

product handles most aspects of configuration management for the lab and is

easy to use. To use SVN properly,

1. Update the repository prior to a work session.

2. Perform work related to the project during a work session.

3. Commit new files and changes to the repository before ending a work

session.
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4. Comment on new documents or modifications made during the work

session to inform team members of pertinent additions and changes.

11.2 Documentation

Documentation within a student-based design laboratory is in constant

conflict with students interests. The great debate as to whether time should be

spent on design and development or on documentation is unending. External

organizations, customers and faculty are always providing pressure on the

student-based design laboratory to provide documentation.

Viewed as a heavily bureaucratic task, documentation is not something

most students are eager to do after a level of design and development. Proper

documentation of the design and a few key systems processes can suffice for

an extensive amount of other documentation normally required by industry

standards.

The crucial reason for documentation in a student-based design labo-

ratory is due to the high turn-over rate. Rework is inevitable if some level

of the design is not documented. In fact, students have a strong tendency

to “make the design their own” even if a design from a previous student is

documented, but not rationalized. The primary reason for that is because the

constraints and assumptions built within a design are not always obvious to

new students. Therefore, assumptions and constraints must be documented

within design drawings or CAD, and in the form of comments for software.

As mentioned in Section 6.3, documenting the design alleviates the need for

separate specific documentation such as interfaces. However, specific types of
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documentation may be required by an external organization. For example,

Texas 2-STEP had to produce material lists, component lists, assembly pro-

cedures, test procedures, certificates of compliance and quality control on top

of the following documentation required for a student-based design laboratory

for the UNP-5 competition. It is important to keep in mind what is required

by partners and customers.

In addition to documenting the design itself, certain systems processes

need to be properly documented to ensure a level of continuity of the design and

discipline in the project. Often a level of visibility of the systems documents

within a student-based design laboratory serves as a constant reminder to think

about the “big picture” and develops a systems engineering culture within the

laboratory.

Specifically, the needs goals and objectives derived from customer ex-

pectations need to be documented and visible to the entire student-based de-

sign laboratory or project team. The concept of operations should be exten-

sively documented in a similar form as presented in Fig. 5.3 and accessible to

the team. Additionally, it is suggested to make the various pictorial concept

of operations visually accessible within the lab as a quick reference during dis-

cussions. Similarly, the system hierarchy is an excellent tool to display in the

laboratory as indicated in Fig 6.3. The systems hierarchy summarizes very

quickly the entire system and helps define tasks to students. Trade studies,

particularly ones that define the mission scope, must be well documented,

while individual or small hardware selection trade studies do not necessarily

need to be documented. All resource budgets, such as mass, volume, power,
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telemetry, etc. should be recorded and maintained through the project life

cycle. Lastly, any detailed risk analysis that significantly impacts the design

should be documented to provide a rationale for the design change and mitiga-

tion strategies. A project risk matrix can be displayed to communicate project

technical risks, similarly as the system hierarchy, in the laboratory.

The main student-based design laboratory systems process to document

are requirements. A requirements document will contain an array of meta data

stored in a single place within one document accessible to the project team.

Some of the meta-data is detailed in Sections 7.4 and 7.5. The SDL uses Mi-

crosoft®Excel to capture all of the requirements information. When writing

requirements, basic data to include are the identification number, rationale,

parent requirement IDs, references and the student engineer responsible for

the requirement. In addition, a requirements document can simultaneously

include a verification matrix.

A requirements verification matrix is a tool to define how a requirement

is verified with respect to the end-product and subsequently if the requirement

has been verified or not. For a student-based design laboratory the verification

matrix can easily be combined with a requirements document to reduce the

number of documents that must be managed. Thus, within the requirements

document the following meta-data should be included,

Identification (ID). A unique abbreviated form to quickly and easily refer-

ence specific requirements without stating the full requirement.

Requirement. The binding “shall” statement that is the requirement on the

system.
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Rationale. A brief explanation of the requirement including assumptions and

constraints.

References. Documents that provide more supporting information that could

not be covered in the brief rationale. Not every requirement shall have

supporting references.

Parent Requirement. The ID(s) of the parent requirement(s) to provide

traceability all the way back to the mission objectives. Every require-

ment has a parent requirement except for the mission need or goals.

Verification Method. The way in which the requirement will be verified

either through Analysis, Demonstration, Inspection, Test or any combi-

nation of the four.

Success Criteria. The criteria for which the system will be evaluated against

during the verification method(s). Often the success criteria is embedded

in the requirement, especially if it is a performance requirement.

Verification Date. The date for which the requirement was successfully ver-

ified.

Responsibility. The student engineer(s) responsible for design, development

and verification with respect to the requirement.

11.3 Example: Paradox Requirements Verification Ma-
trix

As mentioned, for a student-based design laboratory the requirements

verification matrix supplements the requirements; thus, only a single docu-
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ment must be managed. The level of maturity in the Paradox project has not

allowed any of the requirements to actually be verified to-date. However, the

verification matrix is developed at the same time as the requirements them-

selves. For clarity of this example, much of the meta-data not directly related

to the verification matrix is omitted here. The verification methods are abbre-

viated in the following manner: Analysis (A), Demonstration (D), Inspection

(I) and Test (T). For a subset of the Paradox satellite system requirements,

Table 11.1 shows the verification matrix meta-data. Refer to the functional

system requirements in Table 7.3 for the actual requirement statements.

Table 11.1: A subset of the Paradox satellite system requirements’ verification
matrix.

ID Method Success Criteria

SAT-1 A Given a final hardware design with expected electrical
loads, analysis is successful if the system can stay
power positive during all mission operations.

T System-level ground tests shall be successful if the
system can provide power throughout expected mis-
sion operations.

SAT-2 A If the link budget analysis proves the system has the
recommended link margin (Table 9.1), the verifica-
tion is successful.

T High altitude balloon tests shall be successful if ex-
pected mission data is transmitted to the UT ground
station.

SAT-3 A If the link budget analysis proves the system has the
recommended link margin between the two satellites
on-orbit (Table 9.1), the verification is successful.

T High altitude balloon tests shall be successful if ex-
pected mission data is transmitted between the two
satellites.

Continued on the next page.

144



SAT-4 A Simulations with flight software are successful if the
satellite system rendezvous with a target within 200
meters under expected orbit conditions.

SAT-5 A Simulations shall demonstrate the satellite’s capabil-
ity to determine its relative position on the order of
tens of meters to be successful.

T Ground testing within a GPS simulator of sensors
used to determine position shall the above accuracies
to be successful.

SAT-8 A Simulations shall demonstrate the satellite’s capabil-
ity to determine its attitude on the order of degrees
for success.

T Ground testing of sensors used to determine attitude
on an air-bearing platform shall show the above ac-
curacies.

SAT-10 A Simulations prove the system can perform the ∆V
translational maneuvers required for rendezvous in
expected on-orbit conditions to be successful.

D Demonstrate the system’s ability to translate on an
air-bearing platform.

SAT-11 A Simulations shall prove the system can perform rota-
tional maneuvers required for rendezvous in expected
on-orbit conditions for success.

D Demonstrate the system’s ability to execute rotations
on an air-bearing platform.

SAT-12 D Embedded hardware testing with the flight software
shall successfully show the handling of mission data.

SAT-13 D Embedded hardware testing with the flight software
shall successfully show the execution of commands.

11.4 Testing

Of the four methods to verify requirements, testing is by far the most

crucial. System verification testing relates back to the approved requirements

set and can be performed at all stages of the project life cycle and at all levels of
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the design.[1] Tests are often the only way to verify performance requirements.

With unlimited time and money, each element would be extensively tested at

every level of the system. Unfortunately, such an opportunity is unlikely in

any industry, much less in a student-based design laboratory.

Even though the project life cycle is more sequential going from Phase

A to F, within each phase there is an extensive amount of iteration. In life

cycle phases A and B, there is an iteration on the design including some level of

prototyping, but in phase C, a student-based design laboratory must make it a

focus of their effort to do extensive prototyping and component or subsystem

level testing to verify subsystem level requirements. If the requirements are

unable to be verified, the requirement may be relaxed, changed or removed, if

possible. Consequences of requirement modification later in the life cycle must

be considered. Note that the level of iteration in Phase C can still be considered

part of the design, as designs are being tested to meet the requirements before

a final design configuration is chosen.

In phase D, the product is integrated together and system-level test-

ing, often termed “end-to-end” testing, ensures verification of system-level

requirements and customer expectations. This means assembling the system

in its realistic configuration, subjecting it to a flight-like environment and then

operating it through all of the expected operational modes.[1] The subtlety,

however, is whether the test was performed in a “realistic environment”.

A recent example in the experience of the SDL was the deployment

and separation of PARADIGM. Although the most tested aspect of the sys-

tem, PARADIGM failed to properly separate from the Texas A&M satellite
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on-orbit. The deployment was tested on a two-dimensional air-bearing table

multiple times during development. According to the failure report, it is likely

that the deployment tests on the ground did not accurately take into account

the environmental conditions and their effect on the separation of the two satel-

lites. Although the ability to do a separation test in a space-like environment

was unlikely, simply adding thermal vacuum tests may have independently

uncovered the problem(s).

As with any flight project, more testing is encouraged to ensure mission

success. For a student-based design laboratory, it is critical to stress that the

work does not end with a paper design and that time must be allocated to

test hardware at the component, subsystem and system level before delivery.

Planning tests early is especially necessary if the tests require equipment and

facilities from external organizations, which is likely for system-level tests such

as thermal vacuum and vibration tests. In the current schedule for Paradox in

Section 12.4, approximately a year is currently allocated for system integration

and testing.
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Chapter 12

Technical Reviews

12.1 Waterfall and Spiral Project Life Cycle

The NASA style project life cycle is classically the “waterfall” or linear

organization of phases to decompose the process into more manageable pieces,

recall Section 1.2. The rationale for a sequential approach to the development

of a project is because, nominally, a concept comes before design, design comes

before fabrication and fabrication comes before operation. The transitions be-

tween each of these distinguished phases are decision points or control gates.

Thus, a project naturally steps through this linear sequence of events inter-

rupted by reviews of work to ensure proper progression into the next major

phase. However, it is within these specific phases, that a non-linear life cycle

approach is needed for student-based design laboratories.

The spiral project life cycle is an alternative approach towards product

development. The primary difference between the spiral and the waterfall is

that the spiral approach cycles through design, development, build and test

for successive refinement. The spiral project life cycle is most often utilized in

the software industry where construction and preliminary testing are not as

expensive as hardware fabrication and testing. However, within a student-

based design laboratory a level of spiral development even in hardware is

extremely useful within Phases B and C of the linear approach. Not only

148



does it serve to motivate the final design, but the cyclical nature of designing,

prototyping and testing serves to constantly verify the system. In addition,

in a student-based design laboratory with education as a primary objective,

constant prototyping and testing serves to teach students what works and what

does not work. Thus, a spiral method embedded within the waterfall approach

of the life cycle is justified despite higher costs and more time, because students

are more likely to produce design solutions that meets mission objectives.

12.2 NASA Minimum Set of Technical Reviews

As mentioned in the context of the life cycle above, the phases of the

waterfall approach to a project life cycle are divided by decision points or

control gates. Often referred to as technical reviews, these control gates are the

events at which the decision authority (student leadership, faculty or customer)

determines the readiness of a program/project to progress to the next phase of

the life cycle.[1] Primarily, technical reviews are key development milestones

used to measure progress and assess project maturity. If a project does not

showcase enough progress or maturity, then the decision may be to remain in

the current phase and go through the review at a later date or the decision

may be to cancel the project entirely. It depends on demonstrating progress.

NASA outlines a minimum set of technical reviews every project must

conduct. For a complete description of the entrance and success criteria please

see: NPR 7123.1 NASA Systems Engineering Processes and Requirements.[18]

In order the reviews are,

Mission Concept Review (MCR). End of Pre-Phase A. The MCR will
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affirm the mission need and examine the proposed mission’s objectives

and the concept for meeting those objectives.

System Requirements Review (SRR). End of Phase A. The SRR exam-

ines the functional and performance requirements defined for the system

and ensures that the requirements and the selected concept will satisfy

the mission.

Preliminary Design Review (PDR). End of Phase B. The PDR demon-

strates that the preliminary design meets all system requirements with

acceptable risk and within the cost and schedule constraints and estab-

lishes the basis for proceeding with detailed design.

Critical Design Review (CDR). Mid-Phase C. The purpose of the CDR

is to demonstrate that the maturity of the design is appropriate to sup-

port proceeding with full scale fabrication, assembly, integration, and

test, and that the technical effort is on track to complete the flight and

ground system development and mission operations in order to meet

mission performance requirements within the identified cost and sched-

ule constraints.

System Integration Review (SIR). Beginning of Phase D. A SIR recog-

nizes whether a system’s sub-elements, personnel, procedures and facili-

ties are ready for integration.

Test Readiness Review (TRR). Throughout Phase D. A TRR ensures that

the test article (hardware/software), test facility, support personnel, and
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test procedures are ready for testing and data acquisition, reduction, and

control.

Flight Readiness Review (FRR). End of Phase D. The FRR examines

tests, demonstrations, analyses, and audits that determine the system’s

readiness for a safe and successful flight/launch and for subsequent flight

operations. It also ensures that all flight and ground hardware, software,

personnel, and procedures are operationally ready.

Operational Readiness Review (ORR). End of Phase D. The ORR ex-

amines the actual system characteristics and the procedures used in the

system or product’s operation and ensures that all system and support

(flight and ground) hardware, software, personnel, procedures, and user

documentation accurately reflects the deployed state of the system.

Post-Launch Assessment Review (PLAR). Beginning of Phase E. After

launch and deployment, a PLAR assesses the systems status and con-

firms the decision to move forward into nominal operations.

Critical Event Readiness Review (CERR). Throughout Phase E. A CERR

is held prior to any critical event outlined in the operations to ensure the

system, ground facilities, support personnel and procedures are ready for

the critical event.

Decommissioning Review (DR). Beginning of Phase F. The purpose of

the DR is to confirm the decision to terminate or decommission the sys-

tem and assess the readiness for the safe decommissioning and disposal

of system assets.
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12.3 Technical Reviews for Student-based Design Lab-
oratories

For a student-based design laboratory, the minimum set of reviews is

a few less than NASA requires, primarily because of the unusual time con-

straints on the students working in the laboratory. Although these are only

the necessary technical reviews, it does not suggest that these are the only

reviews that could be held. While the listed technical reviews can coincide

with mandated reviews by the customer, the customer may request additional

reviews for the project.

For each student technical review, all stakeholders (students, partic-

ipating faculty, customers and “non-advocates”) should be invited, unless

otherwise indicated by the customer. A non-advocate is considered to be

a person independent from the project, but they should have a similar tech-

nical background, and they should be invited for their skill and experience.

Thus for student-based design laboratories, non-advocates often include non-

participating faculty and student leaders apart from the project but recognized

for their previous experience working in a student-based design laboratory.

If not mandated by the customer, the project student leadership is ex-

pected to set-up and lead reviews. Student leaders will be the main presenters,

but will often be supported by other student members for specific technical

material or demonstrations. Additionally, each review requires a different level

of formality unless otherwise indicated by the customer. Informal reviews often

consist only of presentations and discussions, whereas formal reviews require

supporting documentation, prototypes or flight hardware to be provide ahead
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of a scheduled presentation. During formal reviews, hardware demonstrations

or simulations are expected. The required reviews for student-based design

laboratories are as follows,

Mission Concept Review (MCR). The MCR is an informal review. For

a successful MCR, mission objectives must be clearly defined and are

unambiguous and internally consistent, the preliminary set of require-

ments shall flow from the mission objectives, and a conceptual solution

has been identified which is technically feasible.

Preliminary Design Review (PDR). PDR is the first formal review. At

PDR students must show the following: a complete flow down of verifi-

able requirements, a preliminary design that is expected to meet the re-

quirements and demonstrate all required technology development is com-

plete or valid back-up options exists. Prototype hardware and demon-

strations of new technologies are expected at the review.

Critical Design Review (CDR). Again another formal review, passing CDR

indicates a level of maturity to begin purchasing expensive flight hard-

ware. To pass CDR, the detailed design is expected to meet the re-

quirements, exhibit adequate technical and programmatic margins and

resources and the product verification plans are complete. Refined hard-

ware demonstrations and simulations are expected.

Test Readiness Review (TRR). A TRR is only needed if testing involves

external organizations. Before performing the test, the TRR ensures
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that adequate test plans are completed and approved, adequate iden-

tification and coordination of required test resources is completed and

previous component, and subsystem test results form a satisfactory basis

for proceeding into planned system-level tests.

Flight Readiness Review (FRR). A formal review performed immediately

before delivery for the flight system. Often characterized as a safety re-

view or a series of safety reviews. At FRR, students must show the

flight vehicle is ready and verified for flight with a high probability for

achieving mission success, flight and ground software elements are ready

to support flight and flight operations and interfaces are checked out and

found to be functional.

Operational Readiness Review (ORR). For missions requiring very ac-

tive ground operations due to a time critical series of events, a formal

review is required; if not, the review can be informal. The ORR must en-

sure all operational supporting and enabling products (facilities, equip-

ment, documents, updated databases, etc) that are necessary for the

nominal and contingency operations have been tested and delivered to

support operations; as well as, training has been provided to the users

and operators on the correct operational and contingency procedures for

the system.

Critical Event Readiness Review (CERR). A CERR is needed only if

mission operations includes a critical event and is held similarly to the

ORR.
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Decommissioning Review (DR) An informal review to confirm the deci-

sion between all stakeholders to decommission the system.

12.4 Example: Paradox Project Schedule

The Paradox project schedule is based on a January 2009 initialization

and a projected January 2012 launch. The project life cycle phases and tech-

nical reviews are mapped over the expected three-year development timeline.

At this time, an extra review, SRR, is required by the NASA sponsor and is

noted on the schedule. Multiple TRRs are expected for environmental testing

such as thermal vacuum and vibration tests since UT does not have those fa-

cilities. In addition, due to the time critical mission operations a formal ORR

is expected prior to launch and separation. At the publishing of this thesis,

Paradox was approaching the end of Phase A and had not gone through the

SRR as indicated in Fig. 12.1.

Figure 12.1: The Paradox Project Schedule.

Note that student-based design laboratory projects are often one of

several secondary payloads on a launch vehicle; thus, there is an uncertainty
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in both the launch vehicle to carry the mission and the expected launch date

for the launch vehicle once manifested. Therefore, in light of the schedule in

Fig. 12.1, an FRR and ORR can be a moving target for student-based design

laboratory to prepare. Nevertheless, student-based design laboratory must be

flexible and make preparations for when a launch vehicle becomes available

and ready to launch.
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Chapter 13

Iteration

The systems engineering process is iterative. As shown in Fig. 4.1 indi-

cates, systems engineering feeds into the design, the design and development

feeds into the systems effort and the cycle continues until the system is in

operation.

The constant iteration applies within the project life cycle and at each

level of a system. Although the project life cycle is linear from Pre-Phase

A to Phase F, within each phase there is an extensive amount of iteration.

As Chapter 12 indicated, iteration in the design for a student-based design

laboratory is an important process, but iteration in the systems engineering

is just as important to ensure a valid and successful design solution. The

systems engineering and the design and development are intimately linked

and dependent on one another.

Additionally, the systems engineering process is recursive. Each sub-

element of a larger system can itself be broken into elements and the systems

engineering process outlined here can be applied to each element. The recur-

sion is continued until the component level is reached within the system.

For the Paradox example, NASA started the process by outlining gen-

eral expectations for which the SDL scoped the Paradox mission and generated

the foundation for the system hierarchy. The high level mission objectives were
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then identified and a concept for operations developed. The second iteration

broadened the system hierarchy and functional requirements were allocated to

each system. Mission analysis and trade studies were initiated and the concept

of operations were further defined. The third iteration defined the subsystems

within the satellite system, and functional and performance requirements were

then derived to the subsystem level. At this stage, hardware trade studies and

technology development was initiated and resource budgets were developed for

all of the constrained technical resources and preliminary mission risks were

assessed. The iteration continues until a final design solution is realized.

For a more specific example, the previous SDL project, Texas 2-STEP

(refer to Section 2.2 for mission description), underwent a significant level of

iteration between the Mission Concept Review and Preliminary Design Re-

view. At the outset, the Texas 2-STEP mission architecture involved two

“smart” satellites. A smart satellite can determine its position, velocity, ac-

celeration, attitude and angular rotation on-board and in real-time. The only

initial difference between the “target” satellite and “chaser” satellite, was that

the chaser satellite had a requirement to perform orbit changing maneuvers to

rendezvous with the target. Work ensued under the mission architecture and

a concept of operations, systems hierarchy and set of requirements were de-

rived to the subsystem level. In addition, hardware trade studies, technology

development and design work supported the mission architecture.

An informal peer review prior to PDR allowed students and faculty to

reflect on the mission concept. Invited, independent faculty took an in-depth

look at the mission objectives and challenged the built-in complexities of the
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mission architecture. The mission objectives only asked for a rendezvous to

be performed with a physical target. The two “smart” satellite architecture

levied unnecessary requirements on the target satellite. From a rescope of the

mission architecture, functional allocation to the target satellite was signifi-

cantly trimmed and most of the requirements were eliminated. Subsequently,

the concept of operations, system hierarchy and design of the target radically

changed according to the new requirements. The architecture change scaled

the target design considerable and freed up much of the technical resources for

the chaser design.

The iterative nature of systems engineering cannot be overly empha-

sized. The Texas 2-STEP example showcases an extreme case where a single

iteration significantly changed the design. Paradox is already undergoing sig-

nificant design iteration and just like design and development of a product,

systems engineering must constantly be refined. As previous projects within

the SDL have suggested (Chapter 2), performing systems engineering early is

not sufficient for the success of a mission. The systems processes must con-

tinue to be practiced at every level of the system and throughout the project

life cycle.
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Chapter 14

Conclusion

NASA and other organizations have systems engineering practices that

are tailored to their needs and to the organization itself. However, implemen-

tation by a student-based design laboratory of NASA’s processes overwhelms

students. This thesis presented a tailored NASA systems engineering “engine”

for the unique environment of a student-based design laboratory.

Specific NASA systems engineering techniques are highlighted due to

their relevance to student-based design laboratories while others are omitted.

Additionally, each systems process is explained in the context of a student lab-

oratory and implemented in the current project, Paradox, within the student-

based Satellite Design Lab (SDL) at UT Austin. The examples successfully

showcase the need and extent to which the NASA flavor of systems engineering

can be tailored to a student laboratory. The processes are complete, providing

discipline to a student project within the unique environment, and manage-

able for the student volunteer workforce with unusual time constraints and

high turn-over rate.

The NASA systems engineering processes relevant to student-based de-

sign laboratories are: scope, system hierarchy, interfaces, requirements, trade

studies, resource management, risk management, system verification and tech-

nical reviews. To summarize the tailored processes: Scope identifies the
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unique relationship between a student-based design laboratory and its cus-

tomer, which allows a student-based design laboratory flexibility in develop-

ing the goals and objectives for a mission and subsequently the architecture

and concept of operations. A systems hierarchy simultaneously defines the

structure of the end-product and the tasks for students to perform. Interfaces

must be centralized into specific subsystem designs giving interface design re-

sponsibility to a select number of students. Requirements are a critical aspect

to any project. However, for students the requirement flow down ends once

the functional and performance requirements are fully developed. There is no

need to write design specifications; instead document the design.

A direct link between systems engineering and the design, trade studies

are a fundamental tool for student-based design laboratories to make correct

decisions about the design with respect to mission scope. Resource manage-

ment provides a system-level analysis for constrained technical resources to

ensure a student mission is meeting constraints. Risk management is a qual-

itative way for student to analyze technical mission risks and develop design

solutions to mitigate risks. System verification ensures the end-product meets

requirements and subsequently meets stakeholder expectations. Last, a lim-

ited number of technical reviews provide a forum for the students, faculty,

customer and other stakeholders to review progress and ensure the design and

development will ultimately meet customer expectations.

The students within the SDL have enjoyed the freedom to challenge

the very nature of the satellite business. Through this experience and with a

deep desire, the SDL wishes to be more than just a sandbox for ideas, but to
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be a center for mission success. The very motivation for the thesis has been

to employ systems engineering practices to provide discipline and continuity

for the projects within the SDL to ensure mission success. The continued

challenge is to develop a systems engineering culture and utilize these processes

in Paradox and future satellite missions developed by the dedicated students

in the SDL.
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Appendix A

Target Centered Relative Reference Frame

The relative coordinate frame describes the position of the chaser space-

craft relative to the target spacecraft. The target centered rotating (TCR) ref-

erence frame is defined by three unit vectors, the first pointing in the direction

of motion ûAT , the second perpendicular to the orbit plane in the direction of

angular momentum ûCT , and the third radially outwards ûr. The unit vector

are defined as:
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where r
T

is the target spacecraft position vector in Earth Centered Inertial

(ECI) coordinates, and v
T

is the target spacecraft velocity.
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Figure A.1: Description of positioning in relative reference frame.[3]

Furthermore, transformations of relative positions and relative veloci-

ties from the inertial frame to the relative reference frame are realized using

the transformation matrix T
TCR

ECI
:

T
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.
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